Source Code
More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 18731350 | 77 days ago | Contract Creation | 0 HYPE |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
SegmentedElector
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 1000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {SegmentedEmission} from "contracts/reward/SegmentedEmission.sol";
import {Elector} from "contracts/voting/Elector.sol";
import {IVoter} from "contracts/voting/interfaces/IVoter.sol";
import {TokenStreamConsumer} from "contracts/reward/TokenStreamConsumer.sol";
import {ERC20} from "openzeppelin-v5/token/ERC20/ERC20.sol";
import {IERC20Metadata} from "openzeppelin-v5/token/ERC20/extensions/IERC20Metadata.sol";
contract SegmentedElector is SegmentedEmission, Elector {
address public immutable rewardToken;
constructor(
IVoter voter_,
address gauge_,
address rewardToken_
)
Elector(voter_, gauge_)
ERC20(
string(abi.encodePacked("Voting Receipt for ", _getTokenSymbol(rewardToken_), " rewards")),
string(abi.encodePacked("voted-", IERC20Metadata(voter_.ballot()).symbol()))
)
{
rewardToken = rewardToken_;
}
function _getTokenSymbol(address token) private view returns (string memory) {
try IERC20Metadata(token).symbol() returns (string memory symbol) {
return symbol;
} catch {
return "UNKNOWN";
}
}
function _inputTokens() internal virtual override(SegmentedEmission, TokenStreamConsumer) view returns (address[] memory tokens) {
tokens = new address[](1);
tokens[0] = rewardToken;
}
function _pendingInputAmountWithUpdateUncached(address token) internal virtual override returns (uint128) {
// SegmentedEmission (via TokenStreamConsumerPure) doesn't update anything,
// just returns the current pending amount
return _pendingInputAmountUncached(token);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {TokenStreamConsumerPure} from "./TokenStreamConsumerPure.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {SafeERC20} from "openzeppelin-v5/token/ERC20/utils/SafeERC20.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";
import {SafeCast} from "openzeppelin-v5/utils/math/SafeCast.sol";
import {PrefixSum} from "../lib/PrefixSum.sol";
abstract contract SegmentedEmission is TokenStreamConsumerPure {
using SafeERC20 for IERC20;
using SafeCast for *;
using PrefixSum for PrefixSum.PrefixSumTree;
PrefixSum.PrefixSumTree internal emissionTree;
event BribeAdded(uint128 emissionRate, uint32 begin, uint32 end);
function _inputTokens() internal virtual view override returns (address[] memory);
function addBribe(uint128 emissionRate, uint32 begin, uint32 end) external {
// Adjust begin if it's too early
if (begin < block.timestamp + 1) {
begin = uint32(block.timestamp + 1);
}
require(begin < end, "Invalid time range");
// Calculate total amount based on emission rate and duration
uint32 duration = end - begin;
uint128 totalAmount = emissionRate * uint128(duration);
IERC20(_inputTokens()[0]).safeTransferFrom(msg.sender, address(this), totalAmount);
// Use the provided emission rate directly
int128 emissionRateInt = int256(uint256(emissionRate)).toInt128();
// For begin timestamp: val1 = emission rate, val2 = emission rate * begin
int128 val1Begin = emissionRateInt;
int128 val2Begin = emissionRateInt * int128(uint128(begin));
// For end timestamp: val1 = -emission rate, val2 = - emission rate * end
int128 val1End = -emissionRateInt;
int128 val2End = -emissionRateInt * int128(uint128(end));
// Add to PrefixSum tree
emissionTree.add(begin, val1Begin, val2Begin);
emissionTree.add(end, val1End, val2End);
emit BribeAdded(emissionRate, begin, end);
}
function _totalEmissionAt(address token, uint256 t) internal view override returns (uint128) {
if(_inputTokens()[0] != token) {return 0;}
if (t > type(uint32).max) {
t = type(uint32).max;
}
(int128 sum1, int128 sum2) = emissionTree.prefixSum(uint32(t));
// Total emission at time t = sum1 * t - sum2
int128 totalEmission = (int256(sum1) * int256(t) - int256(sum2)).toInt128();
// Ensure non-negative result
if (totalEmission < 0) {
return 0;
}
return uint128(totalEmission);
}
function _emissionRateAt(address token, uint256 t) internal view override returns (uint256) {
if(_inputTokens()[0] != token) {return 0;}
if (t > type(uint32).max) {
t = type(uint32).max;
}
(int128 sum1, ) = emissionTree.prefixSum(uint32(t));
// Emission rate at time t = sum1
if (sum1 <= 0) {
return 0;
}
// Convert to X128 format (multiply by 2^128)
return uint256(uint128(sum1)) << 128;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {ERC4626TokenStreamSplitter} from "contracts/reward/ERC4626TokenStreamSplitter.sol";
import {IVoter} from "contracts/voting/interfaces/IVoter.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
abstract contract Elector is ERC4626TokenStreamSplitter {
IVoter public immutable voter;
address public immutable gauge;
constructor(IVoter voter_, address gauge_) ERC4626TokenStreamSplitter(IERC20(voter_.ballot())) {
IERC20(voter_.ballot()).approve(address(voter_), type(uint256).max);
voter = voter_;
gauge = gauge_;
}
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual override {
super._deposit(caller, receiver, assets, shares);
voter.vote(gauge, assets, address(this));
}
function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares) internal virtual override {
voter.unvote(gauge, assets, address(this));
super._withdraw(caller, receiver, owner, assets, shares);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {ITokenStreamEmitter} from "contracts/reward/interfaces/ITokenStreamEmitter.sol";
interface IVoter is ITokenStreamEmitter {
function ballot() external returns (address);
function vote(address gauge, uint256 amount, address recipient) external;
function unvote(address gauge, uint256 amount, address recipient) external;
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";
abstract contract TokenStreamConsumer {
using TransientSlot for bytes32;
using TransientSlot for TransientSlot.Uint256Slot;
using SlotDerivation for bytes32;
bytes32 private constant pendingInputAmountCacheSlot = 0x9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c65400; // erc7201 "TokenStreamConsumer.pendingInputAmountCached"
function readCache(address token) private view returns (bool, uint128) {
TransientSlot.Uint256Slot slot = pendingInputAmountCacheSlot.deriveMapping(token).asUint256();
uint256 cached = slot.tload();
if (cached >> 255 == 1) return (true, uint128(cached));
return (false, 0);
}
function writeCache(address token, uint128 value) private {
pendingInputAmountCacheSlot.deriveMapping(token).asUint256().tstore(uint256(1 << 255) | value);
}
function _inputTokens() internal view virtual returns (address[] memory);
function _takeInput(address token, address recipient, uint128 amountMax) internal returns (uint128) {
if (amountMax == 0) return 0;
uint128 amount = _takeInputRaw(token, recipient, amountMax);
(bool cached, uint128 cache) = readCache(token);
if (cached) writeCache(token, cache - amount);
return amount;
}
function _pendingInputAmount(address token) internal view returns (uint128) {
(bool cached, uint128 cache) = readCache(token);
if (cached) return cache;
return _pendingInputAmountUncached(token);
}
function _pendingInputAmountWithUpdate(address token) internal returns (uint128) {
(bool cached, uint128 cache) = readCache(token);
if (cached) return cache;
uint128 fetched = _pendingInputAmountWithUpdateUncached(token);
writeCache(token, fetched);
return fetched;
}
function _takeInputRaw(address token, address recipient, uint128 amountMax) internal virtual returns (uint128);
function _pendingInputAmountWithUpdateUncached(address token) internal virtual returns (uint128);
function _pendingInputAmountUncached(address token) internal view virtual returns (uint128);
function _tokenInputPerSecondX128(address token) internal view virtual returns (uint256);
function tokenInputPerSecondX128(address token) external view returns (uint256) {
return _tokenInputPerSecondX128(token);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {TokenStreamConsumer} from "./TokenStreamConsumer.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {SafeERC20} from "openzeppelin-v5/token/ERC20/utils/SafeERC20.sol";
abstract contract TokenStreamConsumerPure is TokenStreamConsumer {
using SafeERC20 for IERC20;
mapping(address => uint128) public totalEmitted;
function _takeInputRaw(address token, address recipient, uint128 amountMax) internal virtual override returns (uint128) {
totalEmitted[token] += amountMax;
IERC20(token).safeTransfer(recipient, amountMax);
return amountMax;
}
function _totalEmissionAt(address token, uint256 t) internal virtual view returns (uint128);
function totalEmissionAt(address token, uint256 t) public view returns (uint128) {
return _totalEmissionAt(token, t);
}
function _emissionRateAt(address token, uint256 t) internal virtual view returns (uint256);
function emissionRateAt(address token, uint256 t) public virtual view returns (uint256) {
return _emissionRateAt(token, t);
}
function _pendingInputAmountUncached(address token) internal view virtual override returns (uint128) {
return _totalEmissionAt(token, block.timestamp) - totalEmitted[token];
}
function _tokenInputPerSecondX128(address token) internal view virtual override returns (uint256) {
return _emissionRateAt(token, block.timestamp);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: UNLICENSED
/// @title Prefix-sum over (timestamp,value1,value2) using an augmented Red–Black Tree
/// @notice Maintains two values keyed by timestamp (uint32) with O(log n) add/set and prefixSum.
/// @dev
/// - Keys must be > 0 (we use 0 as the NIL sentinel).
/// - Values and sums are signed (int128) so negative deltas are supported.
/// - Duplicate timestamps are coalesced into a single node (we store the aggregate values per key).
/// - Deletion is logical (set the values to 0); physical node removal is omitted for simplicity/gas.
/// - Iterative implementation (no recursion) to avoid stack-depth/gas issues.
pragma solidity ^0.8.19;
library PrefixSum {
// ───────────────────────────────────────────────────────────────
// Types & storage
// ───────────────────────────────────────────────────────────────
struct Node {
uint32 parent; // key of parent
uint32 left; // key of left child
uint32 right; // key of right child
uint8 flags; // bit0: red(1)/black(0)
int128 val1; // first value at this key (can be negative)
int128 val2; // second value at this key (can be negative)
int128 sum1; // first subtree sum rooted at this node
int128 sum2; // second subtree sum rooted at this node
}
// NIL sentinel is key 0. nodes[0] is an implicit black leaf with sum1=0 and sum2=0.
uint32 private constant NIL = 0;
struct PrefixSumTree {
mapping(uint32 => Node) nodes; // keyed by the timestamp itself
uint32 root; // key of the root (0 if empty)
}
// ───────────────────────────────────────────────────────────────
// Events
// ───────────────────────────────────────────────────────────────
event Add(uint32 indexed timestamp, int128 delta1, int128 delta2, int128 newValue1, int128 newValue2);
// ───────────────────────────────────────────────────────────────
// Public API
// ───────────────────────────────────────────────────────────────
/// @notice Add `delta1` and `delta2` to the two values stored at `timestamp`.
function add(PrefixSumTree storage tree, uint32 key, int128 delta1, int128 delta2) internal {
require(key != 0, "key 0 reserved");
if (delta1 == 0 && delta2 == 0) return;
(bool exists, uint32 p) = _find(tree, key);
if (exists) {
tree.nodes[p].val1 += delta1;
tree.nodes[p].val2 += delta2;
_pullUp(tree, p);
return;
}
Node storage z = tree.nodes[key];
z.parent = p;
z.val1 = delta1;
z.val2 = delta2;
z.sum1 = delta1;
z.sum2 = delta2;
_setRed(tree, key, true);
if (p == NIL) {
tree.root = key;
} else if (key < p) {
tree.nodes[p].left = key;
} else {
tree.nodes[p].right = key;
}
// Update sums on the path to the root for the new values.
_pullUp(tree, p);
// Repair Red–Black properties.
_insertFixup(tree, key);
}
/// @notice Sum of both values with key <= `t`.
function prefixSum(PrefixSumTree storage tree, uint32 t) internal view returns (int128 s1, int128 s2) {
uint32 x = tree.root;
while (x != NIL) {
if (t < x) {
x = tree.nodes[x].left;
} else {
s1 += tree.nodes[tree.nodes[x].left].sum1 + tree.nodes[x].val1;
s2 += tree.nodes[tree.nodes[x].left].sum2 + tree.nodes[x].val2;
x = tree.nodes[x].right;
}
}
}
// ───────────────────────────────────────────────────────────────
// Internal helpers — search, insert, rotations, fixups
// ───────────────────────────────────────────────────────────────
function _isRed(PrefixSumTree storage tree, uint32 k) internal view returns (bool) {
return (tree.nodes[k].flags & 0x01) != 0; // bit0 set
}
function _setRed(PrefixSumTree storage tree, uint32 k, bool red) internal {
if (k == NIL) return; // NIL is always black
if (red) tree.nodes[k].flags |= 0x01; else tree.nodes[k].flags &= 0xFE;
}
/// @dev Standard BST search. Returns (true,key) if found; otherwise (false,lastVisitedKeyWhereToAttach).
function _find(PrefixSumTree storage tree, uint32 key) internal view returns (bool, uint32) {
uint32 x = tree.root;
uint32 y = NIL;
while (x != NIL) {
y = x;
if (key < x) {
x = tree.nodes[x].left;
} else if (key > x) {
x = tree.nodes[x].right;
} else {
return (true, x);
}
}
return (false, y);
}
function _pull(PrefixSumTree storage tree, uint32 x) internal {
if (x == NIL) return;
Node storage n = tree.nodes[x];
n.sum1 = n.val1 + tree.nodes[n.left].sum1 + tree.nodes[n.right].sum1;
n.sum2 = n.val2 + tree.nodes[n.left].sum2 + tree.nodes[n.right].sum2;
}
function _pullUp(PrefixSumTree storage tree, uint32 x) internal {
while (x != NIL) {
_pull(tree, x);
x = tree.nodes[x].parent;
}
}
function _leftRotate(PrefixSumTree storage tree, uint32 x) internal {
uint32 y = tree.nodes[x].right;
require(y != NIL, "rotate L with nil");
// Turn y's left subtree into x's right subtree
tree.nodes[x].right = tree.nodes[y].left;
if (tree.nodes[y].left != NIL) tree.nodes[tree.nodes[y].left].parent = x;
// Link y's parent to x's parent
tree.nodes[y].parent = tree.nodes[x].parent;
if (tree.nodes[x].parent == NIL) {
tree.root = y;
} else if (x == tree.nodes[tree.nodes[x].parent].left) {
tree.nodes[tree.nodes[x].parent].left = y;
} else {
tree.nodes[tree.nodes[x].parent].right = y;
}
// Put x on y's left
tree.nodes[y].left = x;
tree.nodes[x].parent = y;
// Update sums: pull(x) then pull(y)
_pull(tree, x);
_pull(tree, y);
}
function _rightRotate(PrefixSumTree storage tree, uint32 x) internal {
uint32 y = tree.nodes[x].left;
require(y != NIL, "rotate R with nil");
// Turn y's right subtree into x's left subtree
tree.nodes[x].left = tree.nodes[y].right;
if (tree.nodes[y].right != NIL) tree.nodes[tree.nodes[y].right].parent = x;
// Link y to x's parent
tree.nodes[y].parent = tree.nodes[x].parent;
if (tree.nodes[x].parent == NIL) {
tree.root = y;
} else if (x == tree.nodes[tree.nodes[x].parent].right) {
tree.nodes[tree.nodes[x].parent].right = y;
} else {
tree.nodes[tree.nodes[x].parent].left = y;
}
// Put x on y's right
tree.nodes[y].right = x;
tree.nodes[x].parent = y;
// Update sums: pull(x) then pull(y)
_pull(tree, x);
_pull(tree, y);
}
function _insertFixup(PrefixSumTree storage tree, uint32 z) internal {
while (_isRed(tree, tree.nodes[z].parent)) {
uint32 p = tree.nodes[z].parent;
uint32 g = tree.nodes[p].parent; // grandparent is not NIL if parent is red
if (p == tree.nodes[g].left) {
uint32 y = tree.nodes[g].right; // uncle
if (_isRed(tree, y)) {
// Case 1: uncle is red
_setRed(tree, p, false);
_setRed(tree, y, false);
_setRed(tree, g, true);
z = g;
} else {
if (z == tree.nodes[p].right) {
// Case 2: triangle -> turn into line
z = p;
_leftRotate(tree, z);
p = tree.nodes[z].parent; // after rotation, update p and g
g = tree.nodes[p].parent;
}
// Case 3: line -> single rotate
_setRed(tree, p, false);
_setRed(tree, g, true);
_rightRotate(tree, g);
}
} else {
// mirror cases
uint32 y = tree.nodes[g].left; // uncle
if (_isRed(tree, y)) {
_setRed(tree, p, false);
_setRed(tree, y, false);
_setRed(tree, g, true);
z = g;
} else {
if (z == tree.nodes[p].left) {
z = p;
_rightRotate(tree, z);
p = tree.nodes[z].parent;
g = tree.nodes[p].parent;
}
_setRed(tree, p, false);
_setRed(tree, g, true);
_leftRotate(tree, g);
}
}
}
_setRed(tree, tree.root, false); // root must be black
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {TokenStreamSplitter} from "./TokenStreamSplitter.sol";
import {IERC4626TokenStreamSplitter} from "contracts/reward/interfaces/IERC4626TokenStreamSplitter.sol";
import {Test} from "forge-std/Test.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {ERC4626} from "openzeppelin-v5/token/ERC20/extensions/ERC4626.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";
abstract contract ERC4626TokenStreamSplitter is ERC4626, TokenStreamSplitter {
constructor(IERC20 asset) ERC4626(asset) {}
function totalAssets() public view virtual override returns (uint256) {
return _convertToAssets(totalSupply(), Math.Rounding.Floor);
}
function _convertToShares(uint256 assets, Math.Rounding) internal view virtual override returns (uint256) {
return assets;
}
function _convertToAssets(uint256 shares, Math.Rounding) internal view virtual override returns (uint256) {
return shares;
}
function maxDeposit(address a) public view override returns (uint256) {
return _convertToAssets(maxMint(a), Math.Rounding.Floor);
}
function maxMint(address a) public view override returns (uint256) {
if (!_whitelisted(a)) return 0;
if (balanceOf(a) > type(uint128).max) return 0;
return type(uint128).max - balanceOf(a);
}
function deposit(uint256 assets, address receiver) public virtual override nonReentrant returns (uint256) {
return super.deposit(assets, receiver);
}
function mint(uint256 shares, address receiver) public virtual override nonReentrant returns (uint256) {
return super.mint(shares, receiver);
}
function withdraw(uint256 assets, address receiver, address owner) public virtual override nonReentrant returns (uint256) {
return super.withdraw(assets, receiver, owner);
}
function redeem(uint256 shares, address receiver, address owner) public virtual override nonReentrant returns (uint256) {
return super.redeem(shares, receiver, owner);
}
function _update(address from, address to, uint256 value) internal override {
super._update(from, to, value);
require(value <= type(uint128).max, "value too large");
if (value != 0) {
if (from != address(0)) _decreaseWeight(from, uint128(value));
if (to != address(0)) _increaseWeight(to, uint128(value));
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface ITokenStreamEmitter {
event Collect(address indexed token, address indexed owner, address indexed recipient, uint128 amount);
function outputTokens() external view returns (address[] memory);
function collect(address token, address recipient, uint128 maxAmount) external returns (uint128);
function collectAll(address recipient) external returns (uint128[] memory);
function collectableAmount(address token, address account) external view returns (uint128);
function tokenOutputPerSecondX128(address token, address account) external view returns (uint256);
function collectableAmountWithUpdate(address token, address account) external returns (uint128);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represent a slot holding a address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represent a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Int256Slot slot) internal view returns (int256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Int256Slot slot, int256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {StakingMath} from "contracts/lib/StakingMath.sol";
import {TokenStreamConsumer} from "contracts/reward/TokenStreamConsumer.sol";
import {TokenStreamEmitter} from "contracts/reward/TokenStreamEmitter.sol";
import {IRewardSource} from "contracts/reward/interfaces/IRewardSource.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {Context} from "openzeppelin-v5/utils/Context.sol";
import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";
abstract contract TokenStreamSplitter is TokenStreamConsumer, TokenStreamEmitter {
error ReceiverNotWhitelisted();
using TransientSlot for bytes32;
using TransientSlot for TransientSlot.Uint256Slot;
using SlotDerivation for bytes32;
using StakingMath for StakingMath.Ledger;
StakingMath.Ledger private ledger;
mapping(address => uint128) private lastSeenPendingInputAmounts;
uint256 private transient distributeCount;
bytes32 private immutable distributeCountAtLastPoke;
constructor() {
distributeCountAtLastPoke = SlotDerivation.erc7201Slot("TokenStreamEmitter.DCALP");
}
function _poke(address account) private {
TransientSlot.Uint256Slot slot = distributeCountAtLastPoke.deriveMapping(account).asUint256();
if (slot.tload() == distributeCount) return;
ledger.poke(_inputTokens(), account);
slot.tstore(distributeCount);
}
function _increaseWeight(address account, uint128 amount) internal {
require(_whitelisted(account), ReceiverNotWhitelisted());
_distribute();
_poke(account);
ledger.stake(account, amount);
}
function _decreaseWeight(address account, uint128 amount) internal {
_distribute();
_poke(account);
ledger.unstake(account, amount);
}
function getWeight(address account) public view returns (uint128) {
return ledger.effectiveStakes(account);
}
function getTotalWeight() public view returns (uint256) {
return ledger.totalStakes;
}
function _outputTokens() internal view override returns (address[] memory) {
return _inputTokens();
}
function _disable(address account) internal {
_distribute();
_poke(account);
ledger.disable(account);
}
function _enable(address account) internal {
_distribute();
_poke(account);
ledger.enable(account);
}
function _distribute() internal {
if (!_shouldDistribute()) return;
distributeCount += 1;
address[] memory inputTokens = _inputTokens();
for (uint256 i = 0; i < inputTokens.length; i++) {
address token = inputTokens[i];
uint128 pendingAmount = _pendingInputAmountWithUpdate(token);
uint128 lastSeen = lastSeenPendingInputAmounts[token];
if (pendingAmount > lastSeen) {
ledger.distribute(token, pendingAmount - lastSeen);
lastSeenPendingInputAmounts[token] = pendingAmount;
}
}
}
function _pendingOutputAmount(address token, address account) internal view override returns (uint128 amount) {
uint128 pendingAmount = _pendingInputAmount(token);
uint128 lastSeen = lastSeenPendingInputAmounts[token];
if (pendingAmount <= lastSeen) return 0;
return ledger.claimable(token, pendingAmount - lastSeen, account);
}
function _pendingOutputAmountWithUpdate(address token, address account) internal override returns (uint128 amount) {
_distribute();
_poke(account);
return ledger.owed(token, account);
}
function _sendOutput(address token, address account, address recipient, uint128 maxAmount) internal override returns (uint128 amount) {
_distribute();
_poke(account);
amount = ledger.collect(token, account, maxAmount);
lastSeenPendingInputAmounts[token] -= amount;
_takeInput(token, recipient, amount);
return amount;
}
function _tokenOutputPerSecondX128(address token, address account) internal view override returns (uint256) {
uint256 balance = ledger.effectiveStakes(account);
if (balance == 0) return 0;
return Math.mulDiv(_tokenInputPerSecondX128(token), balance, ledger.totalStakes);
}
function _shouldDistribute() internal view virtual returns (bool) {
return distributeCount == 0;
}
function _whitelisted(address) internal view virtual returns (bool) {
return true;
}
function _collectUndistributed(address token, address recipient) internal {
_distribute();
uint128 amt = ledger.collectUndistributed(token);
if (amt > 0) {
lastSeenPendingInputAmounts[token] -= amt;
_takeInput(token, recipient, amt);
}
}
}import {ITokenStreamEmitter} from "./ITokenStreamEmitter.sol";
import {IERC4626} from "openzeppelin-v5/interfaces/IERC4626.sol";
interface IERC4626TokenStreamSplitter is IERC4626, ITokenStreamEmitter {}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
// 💬 ABOUT
// Forge Std's default Test.
// 🧩 MODULES
import {console} from "./console.sol";
import {console2} from "./console2.sol";
import {safeconsole} from "./safeconsole.sol";
import {StdAssertions} from "./StdAssertions.sol";
import {StdChains} from "./StdChains.sol";
import {StdCheats} from "./StdCheats.sol";
import {stdError} from "./StdError.sol";
import {StdInvariant} from "./StdInvariant.sol";
import {stdJson} from "./StdJson.sol";
import {stdMath} from "./StdMath.sol";
import {StdStorage, stdStorage} from "./StdStorage.sol";
import {StdStyle} from "./StdStyle.sol";
import {stdToml} from "./StdToml.sol";
import {StdUtils} from "./StdUtils.sol";
import {Vm} from "./Vm.sol";
// 📦 BOILERPLATE
import {TestBase} from "./Base.sol";
// ⭐️ TEST
abstract contract Test is TestBase, StdAssertions, StdChains, StdCheats, StdInvariant, StdUtils {
// Note: IS_TEST() must return true.
bool public IS_TEST = true;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";
/**
* @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
* The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
* and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
* itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
* offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
* of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
* With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
* underlying math can be found xref:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*/
abstract contract ERC4626 is ERC20, IERC4626 {
using Math for uint256;
IERC20 private immutable _asset;
uint8 private immutable _underlyingDecimals;
/**
* @dev Attempted to deposit more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);
/**
* @dev Attempted to mint more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);
/**
* @dev Attempted to withdraw more assets than the max amount for `receiver`.
*/
error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
/**
* @dev Attempted to redeem more shares than the max amount for `receiver`.
*/
error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
*/
constructor(IERC20 asset_) {
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
_underlyingDecimals = success ? assetDecimals : 18;
_asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
(bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
abi.encodeCall(IERC20Metadata.decimals, ())
);
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
return _underlyingDecimals + _decimalsOffset();
}
/** @dev See {IERC4626-asset}. */
function asset() public view virtual returns (address) {
return address(_asset);
}
/** @dev See {IERC4626-totalAssets}. */
function totalAssets() public view virtual returns (uint256) {
return _asset.balanceOf(address(this));
}
/** @dev See {IERC4626-convertToShares}. */
function convertToShares(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-convertToAssets}. */
function convertToAssets(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxDeposit}. */
function maxDeposit(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxMint}. */
function maxMint(address) public view virtual returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxWithdraw}. */
function maxWithdraw(address owner) public view virtual returns (uint256) {
return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
}
/** @dev See {IERC4626-maxRedeem}. */
function maxRedeem(address owner) public view virtual returns (uint256) {
return balanceOf(owner);
}
/** @dev See {IERC4626-previewDeposit}. */
function previewDeposit(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Floor);
}
/** @dev See {IERC4626-previewMint}. */
function previewMint(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewWithdraw}. */
function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
return _convertToShares(assets, Math.Rounding.Ceil);
}
/** @dev See {IERC4626-previewRedeem}. */
function previewRedeem(uint256 shares) public view virtual returns (uint256) {
return _convertToAssets(shares, Math.Rounding.Floor);
}
/** @dev See {IERC4626-deposit}. */
function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
uint256 maxAssets = maxDeposit(receiver);
if (assets > maxAssets) {
revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
}
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/** @dev See {IERC4626-mint}. */
function mint(uint256 shares, address receiver) public virtual returns (uint256) {
uint256 maxShares = maxMint(receiver);
if (shares > maxShares) {
revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
}
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/** @dev See {IERC4626-withdraw}. */
function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
uint256 maxAssets = maxWithdraw(owner);
if (assets > maxAssets) {
revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
}
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/** @dev See {IERC4626-redeem}. */
function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
uint256 maxShares = maxRedeem(owner);
if (shares > maxShares) {
revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
}
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
// If _asset is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20.safeTransferFrom(_asset, caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual {
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20.safeTransfer(_asset, receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-Licensem-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.10;
import "openzeppelin-v5/utils/math/Math.sol";
library StakingMath {
event StakeDisabled(address indexed account);
event StakeEnabled(address indexed account);
event Stake(address indexed account, uint128 amount);
event Unstake(address indexed account, uint128 amount);
event Distribute(address indexed rewardToken, uint256 amount);
event Collect(address indexed rewardToken, address indexed account, uint256 amount);
event Poke(address account, address rewardToken);
struct StakeAccount {
bool disabled;
uint128 stakes;
}
struct Ledger {
uint256 totalStakes;
mapping(address => StakeAccount) accounts;
mapping(address => Reward) rewards;
}
struct Reward {
uint256 rewardGrowthX128;
uint128 undistributed;
mapping(address => Account) accounts;
}
struct Account {
uint256 rewardGrowthLastX128;
uint128 rewardsOwed;
}
using StakingMath for Ledger;
function _calculateRewardGrowth(uint256 totalStakes, uint128 newRewardsAmount) internal pure returns (uint256) {
if (totalStakes == 0) return 0;
unchecked {
return ((uint256(newRewardsAmount) << 128) / totalStakes);
}
}
function disable(Ledger storage self, address account) internal {
StakeAccount storage sa = self.accounts[account];
if (!sa.disabled) {
sa.disabled = true;
self.totalStakes -= sa.stakes;
emit StakeDisabled(account);
}
}
function enable(Ledger storage self, address account) internal {
StakeAccount storage sa = self.accounts[account];
if (sa.disabled) {
sa.disabled = false;
self.totalStakes += sa.stakes;
emit StakeEnabled(account);
}
}
function effectiveStakes(Ledger storage self, address account) internal view returns (uint128) {
StakeAccount storage sa = self.accounts[account];
if (sa.disabled) return 0;
return sa.stakes;
}
function _calculateRewardsOwed(uint128 userStakes, uint256 rewardGrowthX128, uint256 rewardGrowthLastX128) internal pure returns (uint128 rewardsOwed) {
return uint128(Math.min(type(uint128).max, Math.mulDiv(userStakes, rewardGrowthX128 - rewardGrowthLastX128, 1 << 128)));
}
function balanceOf(Ledger storage self, address account) internal view returns (uint128) {
StakeAccount storage sa = self.accounts[account];
return sa.stakes;
}
function stake(Ledger storage self, address account, uint128 amount) internal {
if (amount == 0) return;
StakeAccount storage sa = self.accounts[account];
sa.stakes += amount;
if (!sa.disabled) self.totalStakes += amount;
emit Stake(account, amount);
}
function unstake(Ledger storage self, address account, uint128 amount) internal {
if (amount == 0) return;
StakeAccount storage sa = self.accounts[account];
sa.stakes -= amount;
if (!sa.disabled) self.totalStakes -= amount;
emit Unstake(account, amount);
}
function unstakeAll(Ledger storage self, address account) internal returns (uint128) {
StakeAccount storage sa = self.accounts[account];
uint128 amount = sa.stakes;
self.unstake(account, amount);
return amount;
}
function distribute(Ledger storage self, address rewardToken, uint128 amount) internal {
if (amount == 0) return;
Reward storage reward = self.rewards[rewardToken];
if (self.totalStakes == 0) reward.undistributed += amount;
else reward.rewardGrowthX128 += _calculateRewardGrowth(self.totalStakes, amount);
emit Distribute(rewardToken, amount);
}
function poke(Ledger storage self, address rewardToken, address account) internal {
Reward storage reward = self.rewards[rewardToken];
Account storage acc = reward.accounts[account];
acc.rewardsOwed = uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(self.effectiveStakes(account), reward.rewardGrowthX128, acc.rewardGrowthLastX128)));
acc.rewardGrowthLastX128 = reward.rewardGrowthX128;
emit Poke(account, rewardToken);
}
function poke(Ledger storage self, address[] memory rewardTokens, address account) internal {
uint128 effectiveStake = self.effectiveStakes(account);
for (uint256 i = 0; i < rewardTokens.length; i++) {
address rewardToken = rewardTokens[i];
Reward storage reward = self.rewards[rewardToken];
Account storage acc = reward.accounts[account];
acc.rewardsOwed = uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(effectiveStake, reward.rewardGrowthX128, acc.rewardGrowthLastX128)));
acc.rewardGrowthLastX128 = reward.rewardGrowthX128;
emit Poke(account, rewardToken);
}
}
function owed(Ledger storage self, address rewardToken, address account) internal view returns (uint128) {
Reward storage reward = self.rewards[rewardToken];
Account storage acc = reward.accounts[account];
return acc.rewardsOwed;
}
function claimable(Ledger storage self, address rewardToken, uint128 newRewards, address account) internal view returns (uint128) {
Reward storage reward = self.rewards[rewardToken];
Account storage acc = reward.accounts[account];
uint256 rewardGrowthX128 = reward.rewardGrowthX128 + _calculateRewardGrowth(self.totalStakes, newRewards);
return uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(self.effectiveStakes(account), rewardGrowthX128, acc.rewardGrowthLastX128)));
}
function collect(Ledger storage self, address rewardToken, address account, uint128 amountMax) internal returns (uint128 amount) {
Reward storage reward = self.rewards[rewardToken];
Account storage acc = reward.accounts[account];
uint128 claimableAmount = uint128(Math.min(type(uint128).max, acc.rewardsOwed));
amount = amountMax <= claimableAmount ? amountMax : claimableAmount;
if (amount > 0) {
acc.rewardsOwed -= amount;
emit Collect(rewardToken, account, amount);
}
}
function collectUndistributed(Ledger storage self, address rewardToken) internal returns (uint128 amount) {
Reward storage reward = self.rewards[rewardToken];
amount = reward.undistributed;
reward.undistributed = 0;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
import {ITokenStreamEmitter} from "contracts/reward/interfaces/ITokenStreamEmitter.sol";
import {Context} from "openzeppelin-v5/utils/Context.sol";
import {ReentrancyGuardTransient} from "openzeppelin-v5/utils/ReentrancyGuardTransient.sol";
import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";
abstract contract TokenStreamEmitter is ITokenStreamEmitter, ReentrancyGuardTransient {
using TransientSlot for bytes32;
using TransientSlot for TransientSlot.Uint256Slot;
using SlotDerivation for bytes32;
bytes32 private constant pendingOutputAmountCacheSlot = 0x9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa00; // erc7201 "TokenStreamEmitter.pendingOutputAmountCached"
function readCache(address token, address account) private view returns (bool, uint128) {
TransientSlot.Uint256Slot slot = pendingOutputAmountCacheSlot.deriveMapping(token).deriveMapping(account).asUint256();
uint256 cached = slot.tload();
if (cached >> 255 == 1) return (true, uint128(cached));
return (false, 0);
}
function writeCache(address token, address account, uint128 value) private {
TransientSlot.Uint256Slot slot = pendingOutputAmountCacheSlot.deriveMapping(token).deriveMapping(account).asUint256();
slot.tstore(uint256(1 << 255) | value);
}
// @notice amount of tokens that can be claimed by the account.
// @dev the return value of this function must not decrease except when _sendOutput was called.
function _pendingOutputAmount(address token, address account) internal view virtual returns (uint128);
// @notice _pendingOutputAmount but without staticcall constraint.
// @dev the return value of this function must not decrease except when _sendOutput was called.
// @dev this is used instead of the static version, whenever possible.
function _pendingOutputAmountWithUpdate(address token, address account) internal virtual returns (uint128);
// @notice actually transfer the token
// @dev the caller ensures that maxAmount <= _pendingOutputAmount
function _sendOutput(address token, address account, address recipient, uint128 maxAmount) internal virtual returns (uint128 amount);
// @notice the list of tokens this contract can emit.
// @dev the return value of this function must not change at any circumstance.
function _outputTokens() internal view virtual returns (address[] memory);
function _tokenOutputPerSecondX128(address token, address account) internal view virtual returns (uint256);
function outputTokens() external view returns (address[] memory) {
return _outputTokens();
}
function collect(address token, address recipient, uint128 maxAmount) external nonReentrant returns (uint128) {
address account = msg.sender;
uint128 amount = _sendOutput(token, account, recipient, uint128(Math.min(_collectableAmountWithUpdate(token, account), maxAmount)));
(bool cached, uint128 cache) = readCache(token, account);
if (cached) writeCache(token, account, cache - amount);
emit Collect(token, account, recipient, amount);
return amount;
}
function collectAll(address recipient) external nonReentrant returns (uint128[] memory) {
address[] memory tokens = _outputTokens();
uint128[] memory amounts = new uint128[](tokens.length);
address account = msg.sender;
for (uint256 i = 0; i < tokens.length; i++) {
amounts[i] = _sendOutput(tokens[i], account, recipient, _collectableAmountWithUpdate(tokens[i], account));
(bool cached, uint128 cache) = readCache(tokens[i], account);
if (cached) writeCache(tokens[i], account, cache - amounts[i]);
emit Collect(tokens[i], account, recipient, amounts[i]);
}
return amounts;
}
function collectableAmount(address token, address account) external view returns (uint128) {
(bool cached, uint128 cache) = readCache(token, account);
if (cached) return cache;
return _pendingOutputAmount(token, account);
}
function _collectableAmountWithUpdate(address token, address account) internal returns (uint128) {
(bool cached, uint128 cache) = readCache(token, account);
if (cached) return cache;
uint128 fetched = _pendingOutputAmountWithUpdate(token, account);
writeCache(token, account, fetched);
return fetched;
}
function collectableAmountWithUpdate(address token, address account) external nonReentrant returns (uint128) {
return _collectableAmountWithUpdate(token, account);
}
function tokenOutputPerSecondX128(address token, address account) external view returns (uint256) {
return _tokenOutputPerSecondX128(token, account);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;
interface IRewardSource {
function rewardToken() external view returns (address);
function collect(uint128 amountMax, address recipient) external returns (uint128);
function collectableAmount(address account) external view returns (uint128);
function rewardsPerSecondX128(address account) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;
library console {
address constant CONSOLE_ADDRESS =
0x000000000000000000636F6e736F6c652e6c6f67;
function _sendLogPayloadImplementation(bytes memory payload) internal view {
address consoleAddress = CONSOLE_ADDRESS;
/// @solidity memory-safe-assembly
assembly {
pop(
staticcall(
gas(),
consoleAddress,
add(payload, 32),
mload(payload),
0,
0
)
)
}
}
function _castToPure(
function(bytes memory) internal view fnIn
) internal pure returns (function(bytes memory) pure fnOut) {
assembly {
fnOut := fnIn
}
}
function _sendLogPayload(bytes memory payload) internal pure {
_castToPure(_sendLogPayloadImplementation)(payload);
}
function log() internal pure {
_sendLogPayload(abi.encodeWithSignature("log()"));
}
function logInt(int256 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
}
function logUint(uint256 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
}
function logString(string memory p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
}
function logBool(bool p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
}
function logAddress(address p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
}
function logBytes(bytes memory p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
}
function logBytes1(bytes1 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
}
function logBytes2(bytes2 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
}
function logBytes3(bytes3 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
}
function logBytes4(bytes4 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
}
function logBytes5(bytes5 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
}
function logBytes6(bytes6 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
}
function logBytes7(bytes7 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
}
function logBytes8(bytes8 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
}
function logBytes9(bytes9 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
}
function logBytes10(bytes10 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
}
function logBytes11(bytes11 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
}
function logBytes12(bytes12 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
}
function logBytes13(bytes13 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
}
function logBytes14(bytes14 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
}
function logBytes15(bytes15 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
}
function logBytes16(bytes16 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
}
function logBytes17(bytes17 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
}
function logBytes18(bytes18 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
}
function logBytes19(bytes19 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
}
function logBytes20(bytes20 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
}
function logBytes21(bytes21 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
}
function logBytes22(bytes22 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
}
function logBytes23(bytes23 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
}
function logBytes24(bytes24 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
}
function logBytes25(bytes25 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
}
function logBytes26(bytes26 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
}
function logBytes27(bytes27 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
}
function logBytes28(bytes28 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
}
function logBytes29(bytes29 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
}
function logBytes30(bytes30 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
}
function logBytes31(bytes31 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
}
function logBytes32(bytes32 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
}
function log(uint256 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
}
function log(int256 p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
}
function log(string memory p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
}
function log(bool p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
}
function log(address p0) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address)", p0));
}
function log(uint256 p0, uint256 p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1));
}
function log(uint256 p0, string memory p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1));
}
function log(uint256 p0, bool p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1));
}
function log(uint256 p0, address p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1));
}
function log(string memory p0, uint256 p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1));
}
function log(string memory p0, int256 p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1));
}
function log(string memory p0, string memory p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
}
function log(string memory p0, bool p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
}
function log(string memory p0, address p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
}
function log(bool p0, uint256 p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1));
}
function log(bool p0, string memory p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
}
function log(bool p0, bool p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
}
function log(bool p0, address p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
}
function log(address p0, uint256 p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1));
}
function log(address p0, string memory p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
}
function log(address p0, bool p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
}
function log(address p0, address p1) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
}
function log(uint256 p0, uint256 p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2));
}
function log(uint256 p0, uint256 p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2));
}
function log(uint256 p0, uint256 p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2));
}
function log(uint256 p0, uint256 p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2));
}
function log(uint256 p0, string memory p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2));
}
function log(uint256 p0, string memory p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2));
}
function log(uint256 p0, string memory p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2));
}
function log(uint256 p0, string memory p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2));
}
function log(uint256 p0, bool p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2));
}
function log(uint256 p0, bool p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2));
}
function log(uint256 p0, bool p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2));
}
function log(uint256 p0, bool p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2));
}
function log(uint256 p0, address p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2));
}
function log(uint256 p0, address p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2));
}
function log(uint256 p0, address p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2));
}
function log(uint256 p0, address p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2));
}
function log(string memory p0, uint256 p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2));
}
function log(string memory p0, uint256 p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2));
}
function log(string memory p0, uint256 p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2));
}
function log(string memory p0, uint256 p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2));
}
function log(string memory p0, string memory p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2));
}
function log(string memory p0, string memory p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
}
function log(string memory p0, string memory p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
}
function log(string memory p0, string memory p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
}
function log(string memory p0, bool p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2));
}
function log(string memory p0, bool p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
}
function log(string memory p0, bool p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
}
function log(string memory p0, bool p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
}
function log(string memory p0, address p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2));
}
function log(string memory p0, address p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
}
function log(string memory p0, address p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
}
function log(string memory p0, address p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
}
function log(bool p0, uint256 p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2));
}
function log(bool p0, uint256 p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2));
}
function log(bool p0, uint256 p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2));
}
function log(bool p0, uint256 p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2));
}
function log(bool p0, string memory p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2));
}
function log(bool p0, string memory p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
}
function log(bool p0, string memory p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
}
function log(bool p0, string memory p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
}
function log(bool p0, bool p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2));
}
function log(bool p0, bool p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
}
function log(bool p0, bool p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
}
function log(bool p0, bool p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
}
function log(bool p0, address p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2));
}
function log(bool p0, address p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
}
function log(bool p0, address p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
}
function log(bool p0, address p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
}
function log(address p0, uint256 p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2));
}
function log(address p0, uint256 p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2));
}
function log(address p0, uint256 p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2));
}
function log(address p0, uint256 p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2));
}
function log(address p0, string memory p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2));
}
function log(address p0, string memory p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
}
function log(address p0, string memory p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
}
function log(address p0, string memory p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
}
function log(address p0, bool p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2));
}
function log(address p0, bool p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
}
function log(address p0, bool p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
}
function log(address p0, bool p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
}
function log(address p0, address p1, uint256 p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2));
}
function log(address p0, address p1, string memory p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
}
function log(address p0, address p1, bool p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
}
function log(address p0, address p1, address p2) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
}
function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, uint256 p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, string memory p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, bool p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3));
}
function log(uint256 p0, address p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, uint256 p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, string memory p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, bool p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
}
function log(string memory p0, address p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, uint256 p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, string memory p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, bool p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
}
function log(bool p0, address p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3));
}
function log(address p0, uint256 p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
}
function log(address p0, string memory p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
}
function log(address p0, bool p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint256 p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint256 p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint256 p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, uint256 p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, string memory p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, bool p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, uint256 p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, string memory p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, bool p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
}
function log(address p0, address p1, address p2, address p3) internal pure {
_sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;
import {console as console2} from "./console.sol";// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
/// @author philogy <https://github.com/philogy>
/// @dev Code generated automatically by script.
library safeconsole {
uint256 constant CONSOLE_ADDR = 0x000000000000000000000000000000000000000000636F6e736F6c652e6c6f67;
// Credit to [0age](https://twitter.com/z0age/status/1654922202930888704) and [0xdapper](https://github.com/foundry-rs/forge-std/pull/374)
// for the view-to-pure log trick.
function _sendLogPayload(uint256 offset, uint256 size) private pure {
function(uint256, uint256) internal view fnIn = _sendLogPayloadView;
function(uint256, uint256) internal pure pureSendLogPayload;
/// @solidity memory-safe-assembly
assembly {
pureSendLogPayload := fnIn
}
pureSendLogPayload(offset, size);
}
function _sendLogPayloadView(uint256 offset, uint256 size) private view {
/// @solidity memory-safe-assembly
assembly {
pop(staticcall(gas(), CONSOLE_ADDR, offset, size, 0x0, 0x0))
}
}
function _memcopy(uint256 fromOffset, uint256 toOffset, uint256 length) private pure {
function(uint256, uint256, uint256) internal view fnIn = _memcopyView;
function(uint256, uint256, uint256) internal pure pureMemcopy;
/// @solidity memory-safe-assembly
assembly {
pureMemcopy := fnIn
}
pureMemcopy(fromOffset, toOffset, length);
}
function _memcopyView(uint256 fromOffset, uint256 toOffset, uint256 length) private view {
/// @solidity memory-safe-assembly
assembly {
pop(staticcall(gas(), 0x4, fromOffset, length, toOffset, length))
}
}
function logMemory(uint256 offset, uint256 length) internal pure {
if (offset >= 0x60) {
// Sufficient memory before slice to prepare call header.
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(sub(offset, 0x60))
m1 := mload(sub(offset, 0x40))
m2 := mload(sub(offset, 0x20))
// Selector of `log(bytes)`.
mstore(sub(offset, 0x60), 0x0be77f56)
mstore(sub(offset, 0x40), 0x20)
mstore(sub(offset, 0x20), length)
}
_sendLogPayload(offset - 0x44, length + 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(sub(offset, 0x60), m0)
mstore(sub(offset, 0x40), m1)
mstore(sub(offset, 0x20), m2)
}
} else {
// Insufficient space, so copy slice forward, add header and reverse.
bytes32 m0;
bytes32 m1;
bytes32 m2;
uint256 endOffset = offset + length;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(add(endOffset, 0x00))
m1 := mload(add(endOffset, 0x20))
m2 := mload(add(endOffset, 0x40))
}
_memcopy(offset, offset + 0x60, length);
/// @solidity memory-safe-assembly
assembly {
// Selector of `log(bytes)`.
mstore(add(offset, 0x00), 0x0be77f56)
mstore(add(offset, 0x20), 0x20)
mstore(add(offset, 0x40), length)
}
_sendLogPayload(offset + 0x1c, length + 0x44);
_memcopy(offset + 0x60, offset, length);
/// @solidity memory-safe-assembly
assembly {
mstore(add(endOffset, 0x00), m0)
mstore(add(endOffset, 0x20), m1)
mstore(add(endOffset, 0x40), m2)
}
}
}
function log(address p0) internal pure {
bytes32 m0;
bytes32 m1;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
// Selector of `log(address)`.
mstore(0x00, 0x2c2ecbc2)
mstore(0x20, p0)
}
_sendLogPayload(0x1c, 0x24);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
}
}
function log(bool p0) internal pure {
bytes32 m0;
bytes32 m1;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
// Selector of `log(bool)`.
mstore(0x00, 0x32458eed)
mstore(0x20, p0)
}
_sendLogPayload(0x1c, 0x24);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
}
}
function log(uint256 p0) internal pure {
bytes32 m0;
bytes32 m1;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
// Selector of `log(uint256)`.
mstore(0x00, 0xf82c50f1)
mstore(0x20, p0)
}
_sendLogPayload(0x1c, 0x24);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
}
}
function log(bytes32 p0) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(string)`.
mstore(0x00, 0x41304fac)
mstore(0x20, 0x20)
writeString(0x40, p0)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, address p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(address,address)`.
mstore(0x00, 0xdaf0d4aa)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(address p0, bool p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(address,bool)`.
mstore(0x00, 0x75b605d3)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(address p0, uint256 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(address,uint256)`.
mstore(0x00, 0x8309e8a8)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(address p0, bytes32 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,string)`.
mstore(0x00, 0x759f86bb)
mstore(0x20, p0)
mstore(0x40, 0x40)
writeString(0x60, p1)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(bool,address)`.
mstore(0x00, 0x853c4849)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(bool p0, bool p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(bool,bool)`.
mstore(0x00, 0x2a110e83)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(bool p0, uint256 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(bool,uint256)`.
mstore(0x00, 0x399174d3)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(bool p0, bytes32 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,string)`.
mstore(0x00, 0x8feac525)
mstore(0x20, p0)
mstore(0x40, 0x40)
writeString(0x60, p1)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(uint256,address)`.
mstore(0x00, 0x69276c86)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(uint256 p0, bool p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(uint256,bool)`.
mstore(0x00, 0x1c9d7eb3)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(uint256 p0, uint256 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
// Selector of `log(uint256,uint256)`.
mstore(0x00, 0xf666715a)
mstore(0x20, p0)
mstore(0x40, p1)
}
_sendLogPayload(0x1c, 0x44);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
}
}
function log(uint256 p0, bytes32 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,string)`.
mstore(0x00, 0x643fd0df)
mstore(0x20, p0)
mstore(0x40, 0x40)
writeString(0x60, p1)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bytes32 p0, address p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(string,address)`.
mstore(0x00, 0x319af333)
mstore(0x20, 0x40)
mstore(0x40, p1)
writeString(0x60, p0)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bytes32 p0, bool p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(string,bool)`.
mstore(0x00, 0xc3b55635)
mstore(0x20, 0x40)
mstore(0x40, p1)
writeString(0x60, p0)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bytes32 p0, uint256 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(string,uint256)`.
mstore(0x00, 0xb60e72cc)
mstore(0x20, 0x40)
mstore(0x40, p1)
writeString(0x60, p0)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bytes32 p0, bytes32 p1) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,string)`.
mstore(0x00, 0x4b5c4277)
mstore(0x20, 0x40)
mstore(0x40, 0x80)
writeString(0x60, p0)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,address,address)`.
mstore(0x00, 0x018c84c2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, address p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,address,bool)`.
mstore(0x00, 0xf2a66286)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, address p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,address,uint256)`.
mstore(0x00, 0x17fe6185)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, address p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,address,string)`.
mstore(0x00, 0x007150be)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, bool p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,bool,address)`.
mstore(0x00, 0xf11699ed)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, bool p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,bool,bool)`.
mstore(0x00, 0xeb830c92)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, bool p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,bool,uint256)`.
mstore(0x00, 0x9c4f99fb)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, bool p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,bool,string)`.
mstore(0x00, 0x212255cc)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, uint256 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,uint256,address)`.
mstore(0x00, 0x7bc0d848)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, uint256 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,uint256,bool)`.
mstore(0x00, 0x678209a8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, uint256 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(address,uint256,uint256)`.
mstore(0x00, 0xb69bcaf6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(address p0, uint256 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,uint256,string)`.
mstore(0x00, 0xa1f2e8aa)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, bytes32 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,string,address)`.
mstore(0x00, 0xf08744e8)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, bytes32 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,string,bool)`.
mstore(0x00, 0xcf020fb1)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, bytes32 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(address,string,uint256)`.
mstore(0x00, 0x67dd6ff1)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(address p0, bytes32 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(address,string,string)`.
mstore(0x00, 0xfb772265)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, 0xa0)
writeString(0x80, p1)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bool p0, address p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,address,address)`.
mstore(0x00, 0xd2763667)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, address p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,address,bool)`.
mstore(0x00, 0x18c9c746)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, address p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,address,uint256)`.
mstore(0x00, 0x5f7b9afb)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, address p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,address,string)`.
mstore(0x00, 0xde9a9270)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, bool p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,bool,address)`.
mstore(0x00, 0x1078f68d)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, bool p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,bool,bool)`.
mstore(0x00, 0x50709698)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, bool p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,bool,uint256)`.
mstore(0x00, 0x12f21602)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, bool p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,bool,string)`.
mstore(0x00, 0x2555fa46)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, uint256 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,uint256,address)`.
mstore(0x00, 0x088ef9d2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, uint256 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,uint256,bool)`.
mstore(0x00, 0xe8defba9)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, uint256 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(bool,uint256,uint256)`.
mstore(0x00, 0x37103367)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(bool p0, uint256 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,uint256,string)`.
mstore(0x00, 0xc3fc3970)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, bytes32 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,string,address)`.
mstore(0x00, 0x9591b953)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, bytes32 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,string,bool)`.
mstore(0x00, 0xdbb4c247)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, bytes32 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(bool,string,uint256)`.
mstore(0x00, 0x1093ee11)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bool p0, bytes32 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(bool,string,string)`.
mstore(0x00, 0xb076847f)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, 0xa0)
writeString(0x80, p1)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(uint256 p0, address p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,address,address)`.
mstore(0x00, 0xbcfd9be0)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, address p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,address,bool)`.
mstore(0x00, 0x9b6ec042)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, address p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,address,uint256)`.
mstore(0x00, 0x5a9b5ed5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, address p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,address,string)`.
mstore(0x00, 0x63cb41f9)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, bool p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,bool,address)`.
mstore(0x00, 0x35085f7b)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, bool p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,bool,bool)`.
mstore(0x00, 0x20718650)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, bool p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,bool,uint256)`.
mstore(0x00, 0x20098014)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, bool p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,bool,string)`.
mstore(0x00, 0x85775021)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, uint256 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,uint256,address)`.
mstore(0x00, 0x5c96b331)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, uint256 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,uint256,bool)`.
mstore(0x00, 0x4766da72)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, uint256 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
// Selector of `log(uint256,uint256,uint256)`.
mstore(0x00, 0xd1ed7a3c)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
}
_sendLogPayload(0x1c, 0x64);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
}
}
function log(uint256 p0, uint256 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,uint256,string)`.
mstore(0x00, 0x71d04af2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x60)
writeString(0x80, p2)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, bytes32 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,string,address)`.
mstore(0x00, 0x7afac959)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, bytes32 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,string,bool)`.
mstore(0x00, 0x4ceda75a)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, bytes32 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(uint256,string,uint256)`.
mstore(0x00, 0x37aa7d4c)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, p2)
writeString(0x80, p1)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(uint256 p0, bytes32 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(uint256,string,string)`.
mstore(0x00, 0xb115611f)
mstore(0x20, p0)
mstore(0x40, 0x60)
mstore(0x60, 0xa0)
writeString(0x80, p1)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, address p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,address,address)`.
mstore(0x00, 0xfcec75e0)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, address p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,address,bool)`.
mstore(0x00, 0xc91d5ed4)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, address p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,address,uint256)`.
mstore(0x00, 0x0d26b925)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, address p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,address,string)`.
mstore(0x00, 0xe0e9ad4f)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, 0xa0)
writeString(0x80, p0)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, bool p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,bool,address)`.
mstore(0x00, 0x932bbb38)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, bool p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,bool,bool)`.
mstore(0x00, 0x850b7ad6)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, bool p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,bool,uint256)`.
mstore(0x00, 0xc95958d6)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, bool p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,bool,string)`.
mstore(0x00, 0xe298f47d)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, 0xa0)
writeString(0x80, p0)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, uint256 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,uint256,address)`.
mstore(0x00, 0x1c7ec448)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, uint256 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,uint256,bool)`.
mstore(0x00, 0xca7733b1)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, uint256 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
// Selector of `log(string,uint256,uint256)`.
mstore(0x00, 0xca47c4eb)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, p2)
writeString(0x80, p0)
}
_sendLogPayload(0x1c, 0xa4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
}
}
function log(bytes32 p0, uint256 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,uint256,string)`.
mstore(0x00, 0x5970e089)
mstore(0x20, 0x60)
mstore(0x40, p1)
mstore(0x60, 0xa0)
writeString(0x80, p0)
writeString(0xc0, p2)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, bytes32 p1, address p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,string,address)`.
mstore(0x00, 0x95ed0195)
mstore(0x20, 0x60)
mstore(0x40, 0xa0)
mstore(0x60, p2)
writeString(0x80, p0)
writeString(0xc0, p1)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, bytes32 p1, bool p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,string,bool)`.
mstore(0x00, 0xb0e0f9b5)
mstore(0x20, 0x60)
mstore(0x40, 0xa0)
mstore(0x60, p2)
writeString(0x80, p0)
writeString(0xc0, p1)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, bytes32 p1, uint256 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
// Selector of `log(string,string,uint256)`.
mstore(0x00, 0x5821efa1)
mstore(0x20, 0x60)
mstore(0x40, 0xa0)
mstore(0x60, p2)
writeString(0x80, p0)
writeString(0xc0, p1)
}
_sendLogPayload(0x1c, 0xe4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
}
}
function log(bytes32 p0, bytes32 p1, bytes32 p2) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
// Selector of `log(string,string,string)`.
mstore(0x00, 0x2ced7cef)
mstore(0x20, 0x60)
mstore(0x40, 0xa0)
mstore(0x60, 0xe0)
writeString(0x80, p0)
writeString(0xc0, p1)
writeString(0x100, p2)
}
_sendLogPayload(0x1c, 0x124);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
}
}
function log(address p0, address p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,address,address)`.
mstore(0x00, 0x665bf134)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,address,bool)`.
mstore(0x00, 0x0e378994)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,address,uint256)`.
mstore(0x00, 0x94250d77)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,address,string)`.
mstore(0x00, 0xf808da20)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,bool,address)`.
mstore(0x00, 0x9f1bc36e)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,bool,bool)`.
mstore(0x00, 0x2cd4134a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,bool,uint256)`.
mstore(0x00, 0x3971e78c)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,bool,string)`.
mstore(0x00, 0xaa6540c8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,uint256,address)`.
mstore(0x00, 0x8da6def5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,uint256,bool)`.
mstore(0x00, 0x9b4254e2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,address,uint256,uint256)`.
mstore(0x00, 0xbe553481)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, address p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,uint256,string)`.
mstore(0x00, 0xfdb4f990)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,string,address)`.
mstore(0x00, 0x8f736d16)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,string,bool)`.
mstore(0x00, 0x6f1a594e)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,address,string,uint256)`.
mstore(0x00, 0xef1cefe7)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, address p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,address,string,string)`.
mstore(0x00, 0x21bdaf25)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bool p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,address,address)`.
mstore(0x00, 0x660375dd)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,address,bool)`.
mstore(0x00, 0xa6f50b0f)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,address,uint256)`.
mstore(0x00, 0xa75c59de)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,address,string)`.
mstore(0x00, 0x2dd778e6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,bool,address)`.
mstore(0x00, 0xcf394485)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,bool,bool)`.
mstore(0x00, 0xcac43479)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,bool,uint256)`.
mstore(0x00, 0x8c4e5de6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,bool,string)`.
mstore(0x00, 0xdfc4a2e8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,uint256,address)`.
mstore(0x00, 0xccf790a1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,uint256,bool)`.
mstore(0x00, 0xc4643e20)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,bool,uint256,uint256)`.
mstore(0x00, 0x386ff5f4)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, bool p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,uint256,string)`.
mstore(0x00, 0x0aa6cfad)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,string,address)`.
mstore(0x00, 0x19fd4956)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,string,bool)`.
mstore(0x00, 0x50ad461d)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,bool,string,uint256)`.
mstore(0x00, 0x80e6a20b)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,bool,string,string)`.
mstore(0x00, 0x475c5c33)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, uint256 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,address,address)`.
mstore(0x00, 0x478d1c62)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,address,bool)`.
mstore(0x00, 0xa1bcc9b3)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,address,uint256)`.
mstore(0x00, 0x100f650e)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,address,string)`.
mstore(0x00, 0x1da986ea)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,bool,address)`.
mstore(0x00, 0xa31bfdcc)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,bool,bool)`.
mstore(0x00, 0x3bf5e537)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,bool,uint256)`.
mstore(0x00, 0x22f6b999)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,bool,string)`.
mstore(0x00, 0xc5ad85f9)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,uint256,address)`.
mstore(0x00, 0x20e3984d)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,uint256,bool)`.
mstore(0x00, 0x66f1bc67)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(address,uint256,uint256,uint256)`.
mstore(0x00, 0x34f0e636)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(address p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,uint256,string)`.
mstore(0x00, 0x4a28c017)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,string,address)`.
mstore(0x00, 0x5c430d47)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,string,bool)`.
mstore(0x00, 0xcf18105c)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,uint256,string,uint256)`.
mstore(0x00, 0xbf01f891)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,uint256,string,string)`.
mstore(0x00, 0x88a8c406)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,address,address)`.
mstore(0x00, 0x0d36fa20)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,address,bool)`.
mstore(0x00, 0x0df12b76)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,address,uint256)`.
mstore(0x00, 0x457fe3cf)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,address,string)`.
mstore(0x00, 0xf7e36245)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,bool,address)`.
mstore(0x00, 0x205871c2)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,bool,bool)`.
mstore(0x00, 0x5f1d5c9f)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,bool,uint256)`.
mstore(0x00, 0x515e38b6)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,bool,string)`.
mstore(0x00, 0xbc0b61fe)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,uint256,address)`.
mstore(0x00, 0x63183678)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,uint256,bool)`.
mstore(0x00, 0x0ef7e050)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(address,string,uint256,uint256)`.
mstore(0x00, 0x1dc8e1b8)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(address p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,uint256,string)`.
mstore(0x00, 0x448830a8)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,string,address)`.
mstore(0x00, 0xa04e2f87)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,string,bool)`.
mstore(0x00, 0x35a5071f)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(address,string,string,uint256)`.
mstore(0x00, 0x159f8927)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(address p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(address,string,string,string)`.
mstore(0x00, 0x5d02c50b)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p1)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bool p0, address p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,address,address)`.
mstore(0x00, 0x1d14d001)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,address,bool)`.
mstore(0x00, 0x46600be0)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,address,uint256)`.
mstore(0x00, 0x0c66d1be)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,address,string)`.
mstore(0x00, 0xd812a167)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,bool,address)`.
mstore(0x00, 0x1c41a336)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,bool,bool)`.
mstore(0x00, 0x6a9c478b)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,bool,uint256)`.
mstore(0x00, 0x07831502)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,bool,string)`.
mstore(0x00, 0x4a66cb34)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,uint256,address)`.
mstore(0x00, 0x136b05dd)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,uint256,bool)`.
mstore(0x00, 0xd6019f1c)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,address,uint256,uint256)`.
mstore(0x00, 0x7bf181a1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, address p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,uint256,string)`.
mstore(0x00, 0x51f09ff8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,string,address)`.
mstore(0x00, 0x6f7c603e)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,string,bool)`.
mstore(0x00, 0xe2bfd60b)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,address,string,uint256)`.
mstore(0x00, 0xc21f64c7)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, address p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,address,string,string)`.
mstore(0x00, 0xa73c1db6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bool p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,address,address)`.
mstore(0x00, 0xf4880ea4)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,address,bool)`.
mstore(0x00, 0xc0a302d8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,address,uint256)`.
mstore(0x00, 0x4c123d57)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,address,string)`.
mstore(0x00, 0xa0a47963)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,bool,address)`.
mstore(0x00, 0x8c329b1a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,bool,bool)`.
mstore(0x00, 0x3b2a5ce0)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,bool,uint256)`.
mstore(0x00, 0x6d7045c1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,bool,string)`.
mstore(0x00, 0x2ae408d4)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,uint256,address)`.
mstore(0x00, 0x54a7a9a0)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,uint256,bool)`.
mstore(0x00, 0x619e4d0e)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,bool,uint256,uint256)`.
mstore(0x00, 0x0bb00eab)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, bool p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,uint256,string)`.
mstore(0x00, 0x7dd4d0e0)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,string,address)`.
mstore(0x00, 0xf9ad2b89)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,string,bool)`.
mstore(0x00, 0xb857163a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,bool,string,uint256)`.
mstore(0x00, 0xe3a9ca2f)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,bool,string,string)`.
mstore(0x00, 0x6d1e8751)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, uint256 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,address,address)`.
mstore(0x00, 0x26f560a8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,address,bool)`.
mstore(0x00, 0xb4c314ff)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,address,uint256)`.
mstore(0x00, 0x1537dc87)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,address,string)`.
mstore(0x00, 0x1bb3b09a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,bool,address)`.
mstore(0x00, 0x9acd3616)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,bool,bool)`.
mstore(0x00, 0xceb5f4d7)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,bool,uint256)`.
mstore(0x00, 0x7f9bbca2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,bool,string)`.
mstore(0x00, 0x9143dbb1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,uint256,address)`.
mstore(0x00, 0x00dd87b9)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,uint256,bool)`.
mstore(0x00, 0xbe984353)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(bool,uint256,uint256,uint256)`.
mstore(0x00, 0x374bb4b2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(bool p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,uint256,string)`.
mstore(0x00, 0x8e69fb5d)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,string,address)`.
mstore(0x00, 0xfedd1fff)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,string,bool)`.
mstore(0x00, 0xe5e70b2b)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,uint256,string,uint256)`.
mstore(0x00, 0x6a1199e2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,uint256,string,string)`.
mstore(0x00, 0xf5bc2249)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,address,address)`.
mstore(0x00, 0x2b2b18dc)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,address,bool)`.
mstore(0x00, 0x6dd434ca)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,address,uint256)`.
mstore(0x00, 0xa5cada94)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,address,string)`.
mstore(0x00, 0x12d6c788)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,bool,address)`.
mstore(0x00, 0x538e06ab)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,bool,bool)`.
mstore(0x00, 0xdc5e935b)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,bool,uint256)`.
mstore(0x00, 0x1606a393)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,bool,string)`.
mstore(0x00, 0x483d0416)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,uint256,address)`.
mstore(0x00, 0x1596a1ce)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,uint256,bool)`.
mstore(0x00, 0x6b0e5d53)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(bool,string,uint256,uint256)`.
mstore(0x00, 0x28863fcb)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bool p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,uint256,string)`.
mstore(0x00, 0x1ad96de6)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,string,address)`.
mstore(0x00, 0x97d394d8)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,string,bool)`.
mstore(0x00, 0x1e4b87e5)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(bool,string,string,uint256)`.
mstore(0x00, 0x7be0c3eb)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bool p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(bool,string,string,string)`.
mstore(0x00, 0x1762e32a)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p1)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(uint256 p0, address p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,address,address)`.
mstore(0x00, 0x2488b414)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,address,bool)`.
mstore(0x00, 0x091ffaf5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,address,uint256)`.
mstore(0x00, 0x736efbb6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,address,string)`.
mstore(0x00, 0x031c6f73)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,bool,address)`.
mstore(0x00, 0xef72c513)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,bool,bool)`.
mstore(0x00, 0xe351140f)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,bool,uint256)`.
mstore(0x00, 0x5abd992a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,bool,string)`.
mstore(0x00, 0x90fb06aa)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,uint256,address)`.
mstore(0x00, 0x15c127b5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,uint256,bool)`.
mstore(0x00, 0x5f743a7c)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,address,uint256,uint256)`.
mstore(0x00, 0x0c9cd9c1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, address p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,uint256,string)`.
mstore(0x00, 0xddb06521)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,string,address)`.
mstore(0x00, 0x9cba8fff)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,string,bool)`.
mstore(0x00, 0xcc32ab07)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,address,string,uint256)`.
mstore(0x00, 0x46826b5d)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, address p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,address,string,string)`.
mstore(0x00, 0x3e128ca3)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bool p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,address,address)`.
mstore(0x00, 0xa1ef4cbb)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,address,bool)`.
mstore(0x00, 0x454d54a5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,address,uint256)`.
mstore(0x00, 0x078287f5)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,address,string)`.
mstore(0x00, 0xade052c7)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,bool,address)`.
mstore(0x00, 0x69640b59)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,bool,bool)`.
mstore(0x00, 0xb6f577a1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,bool,uint256)`.
mstore(0x00, 0x7464ce23)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,bool,string)`.
mstore(0x00, 0xdddb9561)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,uint256,address)`.
mstore(0x00, 0x88cb6041)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,uint256,bool)`.
mstore(0x00, 0x91a02e2a)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,bool,uint256,uint256)`.
mstore(0x00, 0xc6acc7a8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, bool p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,uint256,string)`.
mstore(0x00, 0xde03e774)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,string,address)`.
mstore(0x00, 0xef529018)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,string,bool)`.
mstore(0x00, 0xeb928d7f)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,bool,string,uint256)`.
mstore(0x00, 0x2c1d0746)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,bool,string,string)`.
mstore(0x00, 0x68c8b8bd)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, uint256 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,address,address)`.
mstore(0x00, 0x56a5d1b1)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,address,bool)`.
mstore(0x00, 0x15cac476)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,address,uint256)`.
mstore(0x00, 0x88f6e4b2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,address,string)`.
mstore(0x00, 0x6cde40b8)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,bool,address)`.
mstore(0x00, 0x9a816a83)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,bool,bool)`.
mstore(0x00, 0xab085ae6)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,bool,uint256)`.
mstore(0x00, 0xeb7f6fd2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,bool,string)`.
mstore(0x00, 0xa5b4fc99)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,uint256,address)`.
mstore(0x00, 0xfa8185af)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,uint256,bool)`.
mstore(0x00, 0xc598d185)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
/// @solidity memory-safe-assembly
assembly {
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
// Selector of `log(uint256,uint256,uint256,uint256)`.
mstore(0x00, 0x193fb800)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
}
_sendLogPayload(0x1c, 0x84);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
}
}
function log(uint256 p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,uint256,string)`.
mstore(0x00, 0x59cfcbe3)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0x80)
writeString(0xa0, p3)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,string,address)`.
mstore(0x00, 0x42d21db7)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,string,bool)`.
mstore(0x00, 0x7af6ab25)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,uint256,string,uint256)`.
mstore(0x00, 0x5da297eb)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, p3)
writeString(0xa0, p2)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,uint256,string,string)`.
mstore(0x00, 0x27d8afd2)
mstore(0x20, p0)
mstore(0x40, p1)
mstore(0x60, 0x80)
mstore(0x80, 0xc0)
writeString(0xa0, p2)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,address,address)`.
mstore(0x00, 0x6168ed61)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,address,bool)`.
mstore(0x00, 0x90c30a56)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,address,uint256)`.
mstore(0x00, 0xe8d3018d)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,address,string)`.
mstore(0x00, 0x9c3adfa1)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,bool,address)`.
mstore(0x00, 0xae2ec581)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,bool,bool)`.
mstore(0x00, 0xba535d9c)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,bool,uint256)`.
mstore(0x00, 0xcf009880)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,bool,string)`.
mstore(0x00, 0xd2d423cd)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,uint256,address)`.
mstore(0x00, 0x3b2279b4)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,uint256,bool)`.
mstore(0x00, 0x691a8f74)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(uint256,string,uint256,uint256)`.
mstore(0x00, 0x82c25b74)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p1)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(uint256 p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,uint256,string)`.
mstore(0x00, 0xb7b914ca)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p1)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,string,address)`.
mstore(0x00, 0xd583c602)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,string,bool)`.
mstore(0x00, 0xb3a6b6bd)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(uint256,string,string,uint256)`.
mstore(0x00, 0xb028c9bd)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p1)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(uint256 p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(uint256,string,string,string)`.
mstore(0x00, 0x21ad0683)
mstore(0x20, p0)
mstore(0x40, 0x80)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p1)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, address p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,address,address)`.
mstore(0x00, 0xed8f28f6)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,address,bool)`.
mstore(0x00, 0xb59dbd60)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,address,uint256)`.
mstore(0x00, 0x8ef3f399)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,address,string)`.
mstore(0x00, 0x800a1c67)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,bool,address)`.
mstore(0x00, 0x223603bd)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,bool,bool)`.
mstore(0x00, 0x79884c2b)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,bool,uint256)`.
mstore(0x00, 0x3e9f866a)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,bool,string)`.
mstore(0x00, 0x0454c079)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,uint256,address)`.
mstore(0x00, 0x63fb8bc5)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,uint256,bool)`.
mstore(0x00, 0xfc4845f0)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,address,uint256,uint256)`.
mstore(0x00, 0xf8f51b1e)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, address p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,uint256,string)`.
mstore(0x00, 0x5a477632)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,string,address)`.
mstore(0x00, 0xaabc9a31)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,string,bool)`.
mstore(0x00, 0x5f15d28c)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,address,string,uint256)`.
mstore(0x00, 0x91d1112e)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, address p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,address,string,string)`.
mstore(0x00, 0x245986f2)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bool p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,address,address)`.
mstore(0x00, 0x33e9dd1d)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,address,bool)`.
mstore(0x00, 0x958c28c6)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,address,uint256)`.
mstore(0x00, 0x5d08bb05)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,address,string)`.
mstore(0x00, 0x2d8e33a4)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,bool,address)`.
mstore(0x00, 0x7190a529)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,bool,bool)`.
mstore(0x00, 0x895af8c5)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,bool,uint256)`.
mstore(0x00, 0x8e3f78a9)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,bool,string)`.
mstore(0x00, 0x9d22d5dd)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,uint256,address)`.
mstore(0x00, 0x935e09bf)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,uint256,bool)`.
mstore(0x00, 0x8af7cf8a)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,bool,uint256,uint256)`.
mstore(0x00, 0x64b5bb67)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, bool p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,uint256,string)`.
mstore(0x00, 0x742d6ee7)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,string,address)`.
mstore(0x00, 0xe0625b29)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,string,bool)`.
mstore(0x00, 0x3f8a701d)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,bool,string,uint256)`.
mstore(0x00, 0x24f91465)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,bool,string,string)`.
mstore(0x00, 0xa826caeb)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, uint256 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,address,address)`.
mstore(0x00, 0x5ea2b7ae)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,address,bool)`.
mstore(0x00, 0x82112a42)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,address,uint256)`.
mstore(0x00, 0x4f04fdc6)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,address,string)`.
mstore(0x00, 0x9ffb2f93)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,bool,address)`.
mstore(0x00, 0xe0e95b98)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,bool,bool)`.
mstore(0x00, 0x354c36d6)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,bool,uint256)`.
mstore(0x00, 0xe41b6f6f)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,bool,string)`.
mstore(0x00, 0xabf73a98)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,uint256,address)`.
mstore(0x00, 0xe21de278)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,uint256,bool)`.
mstore(0x00, 0x7626db92)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
// Selector of `log(string,uint256,uint256,uint256)`.
mstore(0x00, 0xa7a87853)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
}
_sendLogPayload(0x1c, 0xc4);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
}
}
function log(bytes32 p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,uint256,string)`.
mstore(0x00, 0x854b3496)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, p2)
mstore(0x80, 0xc0)
writeString(0xa0, p0)
writeString(0xe0, p3)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,string,address)`.
mstore(0x00, 0x7c4632a4)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,string,bool)`.
mstore(0x00, 0x7d24491d)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,uint256,string,uint256)`.
mstore(0x00, 0xc67ea9d1)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p2)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,uint256,string,string)`.
mstore(0x00, 0x5ab84e1f)
mstore(0x20, 0x80)
mstore(0x40, p1)
mstore(0x60, 0xc0)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p2)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, address p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,address,address)`.
mstore(0x00, 0x439c7bef)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, address p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,address,bool)`.
mstore(0x00, 0x5ccd4e37)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, address p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,address,uint256)`.
mstore(0x00, 0x7cc3c607)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, address p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,address,string)`.
mstore(0x00, 0xeb1bff80)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, bool p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,bool,address)`.
mstore(0x00, 0xc371c7db)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, bool p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,bool,bool)`.
mstore(0x00, 0x40785869)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, bool p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,bool,uint256)`.
mstore(0x00, 0xd6aefad2)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,bool,string)`.
mstore(0x00, 0x5e84b0ea)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, uint256 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,uint256,address)`.
mstore(0x00, 0x1023f7b2)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, uint256 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,uint256,bool)`.
mstore(0x00, 0xc3a8a654)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
// Selector of `log(string,string,uint256,uint256)`.
mstore(0x00, 0xf45d7d2c)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
}
_sendLogPayload(0x1c, 0x104);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
}
}
function log(bytes32 p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,uint256,string)`.
mstore(0x00, 0x5d1a971a)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, p2)
mstore(0x80, 0x100)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p3)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, bytes32 p2, address p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,string,address)`.
mstore(0x00, 0x6d572f44)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, 0x100)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p2)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,string,bool)`.
mstore(0x00, 0x2c1754ed)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, 0x100)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p2)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
// Selector of `log(string,string,string,uint256)`.
mstore(0x00, 0x8eafb02b)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, 0x100)
mstore(0x80, p3)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p2)
}
_sendLogPayload(0x1c, 0x144);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
}
}
function log(bytes32 p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
bytes32 m0;
bytes32 m1;
bytes32 m2;
bytes32 m3;
bytes32 m4;
bytes32 m5;
bytes32 m6;
bytes32 m7;
bytes32 m8;
bytes32 m9;
bytes32 m10;
bytes32 m11;
bytes32 m12;
/// @solidity memory-safe-assembly
assembly {
function writeString(pos, w) {
let length := 0
for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
mstore(pos, length)
let shift := sub(256, shl(3, length))
mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
}
m0 := mload(0x00)
m1 := mload(0x20)
m2 := mload(0x40)
m3 := mload(0x60)
m4 := mload(0x80)
m5 := mload(0xa0)
m6 := mload(0xc0)
m7 := mload(0xe0)
m8 := mload(0x100)
m9 := mload(0x120)
m10 := mload(0x140)
m11 := mload(0x160)
m12 := mload(0x180)
// Selector of `log(string,string,string,string)`.
mstore(0x00, 0xde68f20a)
mstore(0x20, 0x80)
mstore(0x40, 0xc0)
mstore(0x60, 0x100)
mstore(0x80, 0x140)
writeString(0xa0, p0)
writeString(0xe0, p1)
writeString(0x120, p2)
writeString(0x160, p3)
}
_sendLogPayload(0x1c, 0x184);
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, m0)
mstore(0x20, m1)
mstore(0x40, m2)
mstore(0x60, m3)
mstore(0x80, m4)
mstore(0xa0, m5)
mstore(0xc0, m6)
mstore(0xe0, m7)
mstore(0x100, m8)
mstore(0x120, m9)
mstore(0x140, m10)
mstore(0x160, m11)
mstore(0x180, m12)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import {Vm} from "./Vm.sol";
abstract contract StdAssertions {
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
event log(string);
event logs(bytes);
event log_address(address);
event log_bytes32(bytes32);
event log_int(int256);
event log_uint(uint256);
event log_bytes(bytes);
event log_string(string);
event log_named_address(string key, address val);
event log_named_bytes32(string key, bytes32 val);
event log_named_decimal_int(string key, int256 val, uint256 decimals);
event log_named_decimal_uint(string key, uint256 val, uint256 decimals);
event log_named_int(string key, int256 val);
event log_named_uint(string key, uint256 val);
event log_named_bytes(string key, bytes val);
event log_named_string(string key, string val);
event log_array(uint256[] val);
event log_array(int256[] val);
event log_array(address[] val);
event log_named_array(string key, uint256[] val);
event log_named_array(string key, int256[] val);
event log_named_array(string key, address[] val);
bool private _failed;
function failed() public view returns (bool) {
if (_failed) {
return _failed;
} else {
return vm.load(address(vm), bytes32("failed")) != bytes32(0);
}
}
function fail() internal virtual {
vm.store(address(vm), bytes32("failed"), bytes32(uint256(1)));
_failed = true;
}
function assertTrue(bool data) internal pure virtual {
vm.assertTrue(data);
}
function assertTrue(bool data, string memory err) internal pure virtual {
vm.assertTrue(data, err);
}
function assertFalse(bool data) internal pure virtual {
vm.assertFalse(data);
}
function assertFalse(bool data, string memory err) internal pure virtual {
vm.assertFalse(data, err);
}
function assertEq(bool left, bool right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bool left, bool right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(uint256 left, uint256 right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEqDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertEqDecimal(left, right, decimals);
}
function assertEqDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertEqDecimal(left, right, decimals, err);
}
function assertEq(int256 left, int256 right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEqDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertEqDecimal(left, right, decimals);
}
function assertEqDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertEqDecimal(left, right, decimals, err);
}
function assertEq(address left, address right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(address left, address right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(bytes32 left, bytes32 right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bytes32 left, bytes32 right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq32(bytes32 left, bytes32 right) internal pure virtual {
assertEq(left, right);
}
function assertEq32(bytes32 left, bytes32 right, string memory err) internal pure virtual {
assertEq(left, right, err);
}
function assertEq(string memory left, string memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(string memory left, string memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(bytes memory left, bytes memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bytes memory left, bytes memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(bool[] memory left, bool[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bool[] memory left, bool[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(uint256[] memory left, uint256[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(uint256[] memory left, uint256[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(int256[] memory left, int256[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(int256[] memory left, int256[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(address[] memory left, address[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(address[] memory left, address[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(bytes32[] memory left, bytes32[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bytes32[] memory left, bytes32[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(string[] memory left, string[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(string[] memory left, string[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
function assertEq(bytes[] memory left, bytes[] memory right) internal pure virtual {
vm.assertEq(left, right);
}
function assertEq(bytes[] memory left, bytes[] memory right, string memory err) internal pure virtual {
vm.assertEq(left, right, err);
}
// Legacy helper
function assertEqUint(uint256 left, uint256 right) internal pure virtual {
assertEq(left, right);
}
function assertNotEq(bool left, bool right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bool left, bool right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(uint256 left, uint256 right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertNotEqDecimal(left, right, decimals);
}
function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals, string memory err)
internal
pure
virtual
{
vm.assertNotEqDecimal(left, right, decimals, err);
}
function assertNotEq(int256 left, int256 right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEqDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertNotEqDecimal(left, right, decimals);
}
function assertNotEqDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertNotEqDecimal(left, right, decimals, err);
}
function assertNotEq(address left, address right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(address left, address right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(bytes32 left, bytes32 right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bytes32 left, bytes32 right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq32(bytes32 left, bytes32 right) internal pure virtual {
assertNotEq(left, right);
}
function assertNotEq32(bytes32 left, bytes32 right, string memory err) internal pure virtual {
assertNotEq(left, right, err);
}
function assertNotEq(string memory left, string memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(string memory left, string memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(bytes memory left, bytes memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bytes memory left, bytes memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(bool[] memory left, bool[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bool[] memory left, bool[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(uint256[] memory left, uint256[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(uint256[] memory left, uint256[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(int256[] memory left, int256[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(int256[] memory left, int256[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(address[] memory left, address[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(address[] memory left, address[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(bytes32[] memory left, bytes32[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bytes32[] memory left, bytes32[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(string[] memory left, string[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(string[] memory left, string[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertNotEq(bytes[] memory left, bytes[] memory right) internal pure virtual {
vm.assertNotEq(left, right);
}
function assertNotEq(bytes[] memory left, bytes[] memory right, string memory err) internal pure virtual {
vm.assertNotEq(left, right, err);
}
function assertLt(uint256 left, uint256 right) internal pure virtual {
vm.assertLt(left, right);
}
function assertLt(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertLt(left, right, err);
}
function assertLtDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertLtDecimal(left, right, decimals);
}
function assertLtDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertLtDecimal(left, right, decimals, err);
}
function assertLt(int256 left, int256 right) internal pure virtual {
vm.assertLt(left, right);
}
function assertLt(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertLt(left, right, err);
}
function assertLtDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertLtDecimal(left, right, decimals);
}
function assertLtDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertLtDecimal(left, right, decimals, err);
}
function assertGt(uint256 left, uint256 right) internal pure virtual {
vm.assertGt(left, right);
}
function assertGt(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertGt(left, right, err);
}
function assertGtDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertGtDecimal(left, right, decimals);
}
function assertGtDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertGtDecimal(left, right, decimals, err);
}
function assertGt(int256 left, int256 right) internal pure virtual {
vm.assertGt(left, right);
}
function assertGt(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertGt(left, right, err);
}
function assertGtDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertGtDecimal(left, right, decimals);
}
function assertGtDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertGtDecimal(left, right, decimals, err);
}
function assertLe(uint256 left, uint256 right) internal pure virtual {
vm.assertLe(left, right);
}
function assertLe(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertLe(left, right, err);
}
function assertLeDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertLeDecimal(left, right, decimals);
}
function assertLeDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertLeDecimal(left, right, decimals, err);
}
function assertLe(int256 left, int256 right) internal pure virtual {
vm.assertLe(left, right);
}
function assertLe(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertLe(left, right, err);
}
function assertLeDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertLeDecimal(left, right, decimals);
}
function assertLeDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertLeDecimal(left, right, decimals, err);
}
function assertGe(uint256 left, uint256 right) internal pure virtual {
vm.assertGe(left, right);
}
function assertGe(uint256 left, uint256 right, string memory err) internal pure virtual {
vm.assertGe(left, right, err);
}
function assertGeDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
vm.assertGeDecimal(left, right, decimals);
}
function assertGeDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertGeDecimal(left, right, decimals, err);
}
function assertGe(int256 left, int256 right) internal pure virtual {
vm.assertGe(left, right);
}
function assertGe(int256 left, int256 right, string memory err) internal pure virtual {
vm.assertGe(left, right, err);
}
function assertGeDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
vm.assertGeDecimal(left, right, decimals);
}
function assertGeDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
vm.assertGeDecimal(left, right, decimals, err);
}
function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta) internal pure virtual {
vm.assertApproxEqAbs(left, right, maxDelta);
}
function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta, string memory err)
internal
pure
virtual
{
vm.assertApproxEqAbs(left, right, maxDelta, err);
}
function assertApproxEqAbsDecimal(uint256 left, uint256 right, uint256 maxDelta, uint256 decimals)
internal
pure
virtual
{
vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals);
}
function assertApproxEqAbsDecimal(
uint256 left,
uint256 right,
uint256 maxDelta,
uint256 decimals,
string memory err
) internal pure virtual {
vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals, err);
}
function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta) internal pure virtual {
vm.assertApproxEqAbs(left, right, maxDelta);
}
function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta, string memory err) internal pure virtual {
vm.assertApproxEqAbs(left, right, maxDelta, err);
}
function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals)
internal
pure
virtual
{
vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals);
}
function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals, string memory err)
internal
pure
virtual
{
vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals, err);
}
function assertApproxEqRel(
uint256 left,
uint256 right,
uint256 maxPercentDelta // An 18 decimal fixed point number, where 1e18 == 100%
) internal pure virtual {
vm.assertApproxEqRel(left, right, maxPercentDelta);
}
function assertApproxEqRel(
uint256 left,
uint256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
string memory err
) internal pure virtual {
vm.assertApproxEqRel(left, right, maxPercentDelta, err);
}
function assertApproxEqRelDecimal(
uint256 left,
uint256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
uint256 decimals
) internal pure virtual {
vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals);
}
function assertApproxEqRelDecimal(
uint256 left,
uint256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
uint256 decimals,
string memory err
) internal pure virtual {
vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals, err);
}
function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta) internal pure virtual {
vm.assertApproxEqRel(left, right, maxPercentDelta);
}
function assertApproxEqRel(
int256 left,
int256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
string memory err
) internal pure virtual {
vm.assertApproxEqRel(left, right, maxPercentDelta, err);
}
function assertApproxEqRelDecimal(
int256 left,
int256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
uint256 decimals
) internal pure virtual {
vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals);
}
function assertApproxEqRelDecimal(
int256 left,
int256 right,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
uint256 decimals,
string memory err
) internal pure virtual {
vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals, err);
}
// Inherited from DSTest, not used but kept for backwards-compatibility
function checkEq0(bytes memory left, bytes memory right) internal pure returns (bool) {
return keccak256(left) == keccak256(right);
}
function assertEq0(bytes memory left, bytes memory right) internal pure virtual {
assertEq(left, right);
}
function assertEq0(bytes memory left, bytes memory right, string memory err) internal pure virtual {
assertEq(left, right, err);
}
function assertNotEq0(bytes memory left, bytes memory right) internal pure virtual {
assertNotEq(left, right);
}
function assertNotEq0(bytes memory left, bytes memory right, string memory err) internal pure virtual {
assertNotEq(left, right, err);
}
function assertEqCall(address target, bytes memory callDataA, bytes memory callDataB) internal virtual {
assertEqCall(target, callDataA, target, callDataB, true);
}
function assertEqCall(address targetA, bytes memory callDataA, address targetB, bytes memory callDataB)
internal
virtual
{
assertEqCall(targetA, callDataA, targetB, callDataB, true);
}
function assertEqCall(address target, bytes memory callDataA, bytes memory callDataB, bool strictRevertData)
internal
virtual
{
assertEqCall(target, callDataA, target, callDataB, strictRevertData);
}
function assertEqCall(
address targetA,
bytes memory callDataA,
address targetB,
bytes memory callDataB,
bool strictRevertData
) internal virtual {
(bool successA, bytes memory returnDataA) = address(targetA).call(callDataA);
(bool successB, bytes memory returnDataB) = address(targetB).call(callDataB);
if (successA && successB) {
assertEq(returnDataA, returnDataB, "Call return data does not match");
}
if (!successA && !successB && strictRevertData) {
assertEq(returnDataA, returnDataB, "Call revert data does not match");
}
if (!successA && successB) {
emit log("Error: Calls were not equal");
emit log_named_bytes(" Left call revert data", returnDataA);
emit log_named_bytes(" Right call return data", returnDataB);
revert("assertion failed");
}
if (successA && !successB) {
emit log("Error: Calls were not equal");
emit log_named_bytes(" Left call return data", returnDataA);
emit log_named_bytes(" Right call revert data", returnDataB);
revert("assertion failed");
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {VmSafe} from "./Vm.sol";
/**
* StdChains provides information about EVM compatible chains that can be used in scripts/tests.
* For each chain, the chain's name, chain ID, and a default RPC URL are provided. Chains are
* identified by their alias, which is the same as the alias in the `[rpc_endpoints]` section of
* the `foundry.toml` file. For best UX, ensure the alias in the `foundry.toml` file match the
* alias used in this contract, which can be found as the first argument to the
* `setChainWithDefaultRpcUrl` call in the `initializeStdChains` function.
*
* There are two main ways to use this contract:
* 1. Set a chain with `setChain(string memory chainAlias, ChainData memory chain)` or
* `setChain(string memory chainAlias, Chain memory chain)`
* 2. Get a chain with `getChain(string memory chainAlias)` or `getChain(uint256 chainId)`.
*
* The first time either of those are used, chains are initialized with the default set of RPC URLs.
* This is done in `initializeStdChains`, which uses `setChainWithDefaultRpcUrl`. Defaults are recorded in
* `defaultRpcUrls`.
*
* The `setChain` function is straightforward, and it simply saves off the given chain data.
*
* The `getChain` methods use `getChainWithUpdatedRpcUrl` to return a chain. For example, let's say
* we want to retrieve the RPC URL for `mainnet`:
* - If you have specified data with `setChain`, it will return that.
* - If you have configured a mainnet RPC URL in `foundry.toml`, it will return the URL, provided it
* is valid (e.g. a URL is specified, or an environment variable is given and exists).
* - If neither of the above conditions is met, the default data is returned.
*
* Summarizing the above, the prioritization hierarchy is `setChain` -> `foundry.toml` -> environment variable -> defaults.
*/
abstract contract StdChains {
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
bool private stdChainsInitialized;
struct ChainData {
string name;
uint256 chainId;
string rpcUrl;
}
struct Chain {
// The chain name.
string name;
// The chain's Chain ID.
uint256 chainId;
// The chain's alias. (i.e. what gets specified in `foundry.toml`).
string chainAlias;
// A default RPC endpoint for this chain.
// NOTE: This default RPC URL is included for convenience to facilitate quick tests and
// experimentation. Do not use this RPC URL for production test suites, CI, or other heavy
// usage as you will be throttled and this is a disservice to others who need this endpoint.
string rpcUrl;
}
// Maps from the chain's alias (matching the alias in the `foundry.toml` file) to chain data.
mapping(string => Chain) private chains;
// Maps from the chain's alias to it's default RPC URL.
mapping(string => string) private defaultRpcUrls;
// Maps from a chain ID to it's alias.
mapping(uint256 => string) private idToAlias;
bool private fallbackToDefaultRpcUrls = true;
// The RPC URL will be fetched from config or defaultRpcUrls if possible.
function getChain(string memory chainAlias) internal virtual returns (Chain memory chain) {
require(bytes(chainAlias).length != 0, "StdChains getChain(string): Chain alias cannot be the empty string.");
initializeStdChains();
chain = chains[chainAlias];
require(
chain.chainId != 0,
string(abi.encodePacked("StdChains getChain(string): Chain with alias \"", chainAlias, "\" not found."))
);
chain = getChainWithUpdatedRpcUrl(chainAlias, chain);
}
function getChain(uint256 chainId) internal virtual returns (Chain memory chain) {
require(chainId != 0, "StdChains getChain(uint256): Chain ID cannot be 0.");
initializeStdChains();
string memory chainAlias = idToAlias[chainId];
chain = chains[chainAlias];
require(
chain.chainId != 0,
string(abi.encodePacked("StdChains getChain(uint256): Chain with ID ", vm.toString(chainId), " not found."))
);
chain = getChainWithUpdatedRpcUrl(chainAlias, chain);
}
// set chain info, with priority to argument's rpcUrl field.
function setChain(string memory chainAlias, ChainData memory chain) internal virtual {
require(
bytes(chainAlias).length != 0,
"StdChains setChain(string,ChainData): Chain alias cannot be the empty string."
);
require(chain.chainId != 0, "StdChains setChain(string,ChainData): Chain ID cannot be 0.");
initializeStdChains();
string memory foundAlias = idToAlias[chain.chainId];
require(
bytes(foundAlias).length == 0 || keccak256(bytes(foundAlias)) == keccak256(bytes(chainAlias)),
string(
abi.encodePacked(
"StdChains setChain(string,ChainData): Chain ID ",
vm.toString(chain.chainId),
" already used by \"",
foundAlias,
"\"."
)
)
);
uint256 oldChainId = chains[chainAlias].chainId;
delete idToAlias[oldChainId];
chains[chainAlias] =
Chain({name: chain.name, chainId: chain.chainId, chainAlias: chainAlias, rpcUrl: chain.rpcUrl});
idToAlias[chain.chainId] = chainAlias;
}
// set chain info, with priority to argument's rpcUrl field.
function setChain(string memory chainAlias, Chain memory chain) internal virtual {
setChain(chainAlias, ChainData({name: chain.name, chainId: chain.chainId, rpcUrl: chain.rpcUrl}));
}
function _toUpper(string memory str) private pure returns (string memory) {
bytes memory strb = bytes(str);
bytes memory copy = new bytes(strb.length);
for (uint256 i = 0; i < strb.length; i++) {
bytes1 b = strb[i];
if (b >= 0x61 && b <= 0x7A) {
copy[i] = bytes1(uint8(b) - 32);
} else {
copy[i] = b;
}
}
return string(copy);
}
// lookup rpcUrl, in descending order of priority:
// current -> config (foundry.toml) -> environment variable -> default
function getChainWithUpdatedRpcUrl(string memory chainAlias, Chain memory chain)
private
view
returns (Chain memory)
{
if (bytes(chain.rpcUrl).length == 0) {
try vm.rpcUrl(chainAlias) returns (string memory configRpcUrl) {
chain.rpcUrl = configRpcUrl;
} catch (bytes memory err) {
string memory envName = string(abi.encodePacked(_toUpper(chainAlias), "_RPC_URL"));
if (fallbackToDefaultRpcUrls) {
chain.rpcUrl = vm.envOr(envName, defaultRpcUrls[chainAlias]);
} else {
chain.rpcUrl = vm.envString(envName);
}
// Distinguish 'not found' from 'cannot read'
// The upstream error thrown by forge for failing cheats changed so we check both the old and new versions
bytes memory oldNotFoundError =
abi.encodeWithSignature("CheatCodeError", string(abi.encodePacked("invalid rpc url ", chainAlias)));
bytes memory newNotFoundError = abi.encodeWithSignature(
"CheatcodeError(string)", string(abi.encodePacked("invalid rpc url: ", chainAlias))
);
bytes32 errHash = keccak256(err);
if (
(errHash != keccak256(oldNotFoundError) && errHash != keccak256(newNotFoundError))
|| bytes(chain.rpcUrl).length == 0
) {
/// @solidity memory-safe-assembly
assembly {
revert(add(32, err), mload(err))
}
}
}
}
return chain;
}
function setFallbackToDefaultRpcUrls(bool useDefault) internal {
fallbackToDefaultRpcUrls = useDefault;
}
function initializeStdChains() private {
if (stdChainsInitialized) return;
stdChainsInitialized = true;
// If adding an RPC here, make sure to test the default RPC URL in `test_Rpcs` in `StdChains.t.sol`
setChainWithDefaultRpcUrl("anvil", ChainData("Anvil", 31337, "http://127.0.0.1:8545"));
setChainWithDefaultRpcUrl(
"mainnet", ChainData("Mainnet", 1, "https://eth-mainnet.alchemyapi.io/v2/pwc5rmJhrdoaSEfimoKEmsvOjKSmPDrP")
);
setChainWithDefaultRpcUrl(
"sepolia", ChainData("Sepolia", 11155111, "https://sepolia.infura.io/v3/b9794ad1ddf84dfb8c34d6bb5dca2001")
);
setChainWithDefaultRpcUrl("holesky", ChainData("Holesky", 17000, "https://rpc.holesky.ethpandaops.io"));
setChainWithDefaultRpcUrl("optimism", ChainData("Optimism", 10, "https://mainnet.optimism.io"));
setChainWithDefaultRpcUrl(
"optimism_sepolia", ChainData("Optimism Sepolia", 11155420, "https://sepolia.optimism.io")
);
setChainWithDefaultRpcUrl("arbitrum_one", ChainData("Arbitrum One", 42161, "https://arb1.arbitrum.io/rpc"));
setChainWithDefaultRpcUrl(
"arbitrum_one_sepolia", ChainData("Arbitrum One Sepolia", 421614, "https://sepolia-rollup.arbitrum.io/rpc")
);
setChainWithDefaultRpcUrl("arbitrum_nova", ChainData("Arbitrum Nova", 42170, "https://nova.arbitrum.io/rpc"));
setChainWithDefaultRpcUrl("polygon", ChainData("Polygon", 137, "https://polygon-rpc.com"));
setChainWithDefaultRpcUrl(
"polygon_amoy", ChainData("Polygon Amoy", 80002, "https://rpc-amoy.polygon.technology")
);
setChainWithDefaultRpcUrl("avalanche", ChainData("Avalanche", 43114, "https://api.avax.network/ext/bc/C/rpc"));
setChainWithDefaultRpcUrl(
"avalanche_fuji", ChainData("Avalanche Fuji", 43113, "https://api.avax-test.network/ext/bc/C/rpc")
);
setChainWithDefaultRpcUrl(
"bnb_smart_chain", ChainData("BNB Smart Chain", 56, "https://bsc-dataseed1.binance.org")
);
setChainWithDefaultRpcUrl(
"bnb_smart_chain_testnet",
ChainData("BNB Smart Chain Testnet", 97, "https://rpc.ankr.com/bsc_testnet_chapel")
);
setChainWithDefaultRpcUrl("gnosis_chain", ChainData("Gnosis Chain", 100, "https://rpc.gnosischain.com"));
setChainWithDefaultRpcUrl("moonbeam", ChainData("Moonbeam", 1284, "https://rpc.api.moonbeam.network"));
setChainWithDefaultRpcUrl(
"moonriver", ChainData("Moonriver", 1285, "https://rpc.api.moonriver.moonbeam.network")
);
setChainWithDefaultRpcUrl("moonbase", ChainData("Moonbase", 1287, "https://rpc.testnet.moonbeam.network"));
setChainWithDefaultRpcUrl("base_sepolia", ChainData("Base Sepolia", 84532, "https://sepolia.base.org"));
setChainWithDefaultRpcUrl("base", ChainData("Base", 8453, "https://mainnet.base.org"));
setChainWithDefaultRpcUrl("blast_sepolia", ChainData("Blast Sepolia", 168587773, "https://sepolia.blast.io"));
setChainWithDefaultRpcUrl("blast", ChainData("Blast", 81457, "https://rpc.blast.io"));
setChainWithDefaultRpcUrl("fantom_opera", ChainData("Fantom Opera", 250, "https://rpc.ankr.com/fantom/"));
setChainWithDefaultRpcUrl(
"fantom_opera_testnet", ChainData("Fantom Opera Testnet", 4002, "https://rpc.ankr.com/fantom_testnet/")
);
setChainWithDefaultRpcUrl("fraxtal", ChainData("Fraxtal", 252, "https://rpc.frax.com"));
setChainWithDefaultRpcUrl("fraxtal_testnet", ChainData("Fraxtal Testnet", 2522, "https://rpc.testnet.frax.com"));
setChainWithDefaultRpcUrl(
"berachain_bartio_testnet", ChainData("Berachain bArtio Testnet", 80084, "https://bartio.rpc.berachain.com")
);
setChainWithDefaultRpcUrl("flare", ChainData("Flare", 14, "https://flare-api.flare.network/ext/C/rpc"));
setChainWithDefaultRpcUrl(
"flare_coston2", ChainData("Flare Coston2", 114, "https://coston2-api.flare.network/ext/C/rpc")
);
}
// set chain info, with priority to chainAlias' rpc url in foundry.toml
function setChainWithDefaultRpcUrl(string memory chainAlias, ChainData memory chain) private {
string memory rpcUrl = chain.rpcUrl;
defaultRpcUrls[chainAlias] = rpcUrl;
chain.rpcUrl = "";
setChain(chainAlias, chain);
chain.rpcUrl = rpcUrl; // restore argument
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import {StdStorage, stdStorage} from "./StdStorage.sol";
import {console2} from "./console2.sol";
import {Vm} from "./Vm.sol";
abstract contract StdCheatsSafe {
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
uint256 private constant UINT256_MAX =
115792089237316195423570985008687907853269984665640564039457584007913129639935;
bool private gasMeteringOff;
// Data structures to parse Transaction objects from the broadcast artifact
// that conform to EIP1559. The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct RawTx1559 {
string[] arguments;
address contractAddress;
string contractName;
// json value name = function
string functionSig;
bytes32 hash;
// json value name = tx
RawTx1559Detail txDetail;
// json value name = type
string opcode;
}
struct RawTx1559Detail {
AccessList[] accessList;
bytes data;
address from;
bytes gas;
bytes nonce;
address to;
bytes txType;
bytes value;
}
struct Tx1559 {
string[] arguments;
address contractAddress;
string contractName;
string functionSig;
bytes32 hash;
Tx1559Detail txDetail;
string opcode;
}
struct Tx1559Detail {
AccessList[] accessList;
bytes data;
address from;
uint256 gas;
uint256 nonce;
address to;
uint256 txType;
uint256 value;
}
// Data structures to parse Transaction objects from the broadcast artifact
// that DO NOT conform to EIP1559. The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct TxLegacy {
string[] arguments;
address contractAddress;
string contractName;
string functionSig;
string hash;
string opcode;
TxDetailLegacy transaction;
}
struct TxDetailLegacy {
AccessList[] accessList;
uint256 chainId;
bytes data;
address from;
uint256 gas;
uint256 gasPrice;
bytes32 hash;
uint256 nonce;
bytes1 opcode;
bytes32 r;
bytes32 s;
uint256 txType;
address to;
uint8 v;
uint256 value;
}
struct AccessList {
address accessAddress;
bytes32[] storageKeys;
}
// Data structures to parse Receipt objects from the broadcast artifact.
// The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct RawReceipt {
bytes32 blockHash;
bytes blockNumber;
address contractAddress;
bytes cumulativeGasUsed;
bytes effectiveGasPrice;
address from;
bytes gasUsed;
RawReceiptLog[] logs;
bytes logsBloom;
bytes status;
address to;
bytes32 transactionHash;
bytes transactionIndex;
}
struct Receipt {
bytes32 blockHash;
uint256 blockNumber;
address contractAddress;
uint256 cumulativeGasUsed;
uint256 effectiveGasPrice;
address from;
uint256 gasUsed;
ReceiptLog[] logs;
bytes logsBloom;
uint256 status;
address to;
bytes32 transactionHash;
uint256 transactionIndex;
}
// Data structures to parse the entire broadcast artifact, assuming the
// transactions conform to EIP1559.
struct EIP1559ScriptArtifact {
string[] libraries;
string path;
string[] pending;
Receipt[] receipts;
uint256 timestamp;
Tx1559[] transactions;
TxReturn[] txReturns;
}
struct RawEIP1559ScriptArtifact {
string[] libraries;
string path;
string[] pending;
RawReceipt[] receipts;
TxReturn[] txReturns;
uint256 timestamp;
RawTx1559[] transactions;
}
struct RawReceiptLog {
// json value = address
address logAddress;
bytes32 blockHash;
bytes blockNumber;
bytes data;
bytes logIndex;
bool removed;
bytes32[] topics;
bytes32 transactionHash;
bytes transactionIndex;
bytes transactionLogIndex;
}
struct ReceiptLog {
// json value = address
address logAddress;
bytes32 blockHash;
uint256 blockNumber;
bytes data;
uint256 logIndex;
bytes32[] topics;
uint256 transactionIndex;
uint256 transactionLogIndex;
bool removed;
}
struct TxReturn {
string internalType;
string value;
}
struct Account {
address addr;
uint256 key;
}
enum AddressType {
Payable,
NonPayable,
ZeroAddress,
Precompile,
ForgeAddress
}
// Checks that `addr` is not blacklisted by token contracts that have a blacklist.
function assumeNotBlacklisted(address token, address addr) internal view virtual {
// Nothing to check if `token` is not a contract.
uint256 tokenCodeSize;
assembly {
tokenCodeSize := extcodesize(token)
}
require(tokenCodeSize > 0, "StdCheats assumeNotBlacklisted(address,address): Token address is not a contract.");
bool success;
bytes memory returnData;
// 4-byte selector for `isBlacklisted(address)`, used by USDC.
(success, returnData) = token.staticcall(abi.encodeWithSelector(0xfe575a87, addr));
vm.assume(!success || abi.decode(returnData, (bool)) == false);
// 4-byte selector for `isBlackListed(address)`, used by USDT.
(success, returnData) = token.staticcall(abi.encodeWithSelector(0xe47d6060, addr));
vm.assume(!success || abi.decode(returnData, (bool)) == false);
}
// Checks that `addr` is not blacklisted by token contracts that have a blacklist.
// This is identical to `assumeNotBlacklisted(address,address)` but with a different name, for
// backwards compatibility, since this name was used in the original PR which already has
// a release. This function can be removed in a future release once we want a breaking change.
function assumeNoBlacklisted(address token, address addr) internal view virtual {
assumeNotBlacklisted(token, addr);
}
function assumeAddressIsNot(address addr, AddressType addressType) internal virtual {
if (addressType == AddressType.Payable) {
assumeNotPayable(addr);
} else if (addressType == AddressType.NonPayable) {
assumePayable(addr);
} else if (addressType == AddressType.ZeroAddress) {
assumeNotZeroAddress(addr);
} else if (addressType == AddressType.Precompile) {
assumeNotPrecompile(addr);
} else if (addressType == AddressType.ForgeAddress) {
assumeNotForgeAddress(addr);
}
}
function assumeAddressIsNot(address addr, AddressType addressType1, AddressType addressType2) internal virtual {
assumeAddressIsNot(addr, addressType1);
assumeAddressIsNot(addr, addressType2);
}
function assumeAddressIsNot(
address addr,
AddressType addressType1,
AddressType addressType2,
AddressType addressType3
) internal virtual {
assumeAddressIsNot(addr, addressType1);
assumeAddressIsNot(addr, addressType2);
assumeAddressIsNot(addr, addressType3);
}
function assumeAddressIsNot(
address addr,
AddressType addressType1,
AddressType addressType2,
AddressType addressType3,
AddressType addressType4
) internal virtual {
assumeAddressIsNot(addr, addressType1);
assumeAddressIsNot(addr, addressType2);
assumeAddressIsNot(addr, addressType3);
assumeAddressIsNot(addr, addressType4);
}
// This function checks whether an address, `addr`, is payable. It works by sending 1 wei to
// `addr` and checking the `success` return value.
// NOTE: This function may result in state changes depending on the fallback/receive logic
// implemented by `addr`, which should be taken into account when this function is used.
function _isPayable(address addr) private returns (bool) {
require(
addr.balance < UINT256_MAX,
"StdCheats _isPayable(address): Balance equals max uint256, so it cannot receive any more funds"
);
uint256 origBalanceTest = address(this).balance;
uint256 origBalanceAddr = address(addr).balance;
vm.deal(address(this), 1);
(bool success,) = payable(addr).call{value: 1}("");
// reset balances
vm.deal(address(this), origBalanceTest);
vm.deal(addr, origBalanceAddr);
return success;
}
// NOTE: This function may result in state changes depending on the fallback/receive logic
// implemented by `addr`, which should be taken into account when this function is used. See the
// `_isPayable` method for more information.
function assumePayable(address addr) internal virtual {
vm.assume(_isPayable(addr));
}
function assumeNotPayable(address addr) internal virtual {
vm.assume(!_isPayable(addr));
}
function assumeNotZeroAddress(address addr) internal pure virtual {
vm.assume(addr != address(0));
}
function assumeNotPrecompile(address addr) internal pure virtual {
assumeNotPrecompile(addr, _pureChainId());
}
function assumeNotPrecompile(address addr, uint256 chainId) internal pure virtual {
// Note: For some chains like Optimism these are technically predeploys (i.e. bytecode placed at a specific
// address), but the same rationale for excluding them applies so we include those too.
// These are reserved by Ethereum and may be on all EVM-compatible chains.
vm.assume(addr < address(0x1) || addr > address(0xff));
// forgefmt: disable-start
if (chainId == 10 || chainId == 420) {
// https://github.com/ethereum-optimism/optimism/blob/eaa371a0184b56b7ca6d9eb9cb0a2b78b2ccd864/op-bindings/predeploys/addresses.go#L6-L21
vm.assume(addr < address(0x4200000000000000000000000000000000000000) || addr > address(0x4200000000000000000000000000000000000800));
} else if (chainId == 42161 || chainId == 421613) {
// https://developer.arbitrum.io/useful-addresses#arbitrum-precompiles-l2-same-on-all-arb-chains
vm.assume(addr < address(0x0000000000000000000000000000000000000064) || addr > address(0x0000000000000000000000000000000000000068));
} else if (chainId == 43114 || chainId == 43113) {
// https://github.com/ava-labs/subnet-evm/blob/47c03fd007ecaa6de2c52ea081596e0a88401f58/precompile/params.go#L18-L59
vm.assume(addr < address(0x0100000000000000000000000000000000000000) || addr > address(0x01000000000000000000000000000000000000ff));
vm.assume(addr < address(0x0200000000000000000000000000000000000000) || addr > address(0x02000000000000000000000000000000000000FF));
vm.assume(addr < address(0x0300000000000000000000000000000000000000) || addr > address(0x03000000000000000000000000000000000000Ff));
}
// forgefmt: disable-end
}
function assumeNotForgeAddress(address addr) internal pure virtual {
// vm, console, and Create2Deployer addresses
vm.assume(
addr != address(vm) && addr != 0x000000000000000000636F6e736F6c652e6c6f67
&& addr != 0x4e59b44847b379578588920cA78FbF26c0B4956C
);
}
function readEIP1559ScriptArtifact(string memory path)
internal
view
virtual
returns (EIP1559ScriptArtifact memory)
{
string memory data = vm.readFile(path);
bytes memory parsedData = vm.parseJson(data);
RawEIP1559ScriptArtifact memory rawArtifact = abi.decode(parsedData, (RawEIP1559ScriptArtifact));
EIP1559ScriptArtifact memory artifact;
artifact.libraries = rawArtifact.libraries;
artifact.path = rawArtifact.path;
artifact.timestamp = rawArtifact.timestamp;
artifact.pending = rawArtifact.pending;
artifact.txReturns = rawArtifact.txReturns;
artifact.receipts = rawToConvertedReceipts(rawArtifact.receipts);
artifact.transactions = rawToConvertedEIPTx1559s(rawArtifact.transactions);
return artifact;
}
function rawToConvertedEIPTx1559s(RawTx1559[] memory rawTxs) internal pure virtual returns (Tx1559[] memory) {
Tx1559[] memory txs = new Tx1559[](rawTxs.length);
for (uint256 i; i < rawTxs.length; i++) {
txs[i] = rawToConvertedEIPTx1559(rawTxs[i]);
}
return txs;
}
function rawToConvertedEIPTx1559(RawTx1559 memory rawTx) internal pure virtual returns (Tx1559 memory) {
Tx1559 memory transaction;
transaction.arguments = rawTx.arguments;
transaction.contractName = rawTx.contractName;
transaction.functionSig = rawTx.functionSig;
transaction.hash = rawTx.hash;
transaction.txDetail = rawToConvertedEIP1559Detail(rawTx.txDetail);
transaction.opcode = rawTx.opcode;
return transaction;
}
function rawToConvertedEIP1559Detail(RawTx1559Detail memory rawDetail)
internal
pure
virtual
returns (Tx1559Detail memory)
{
Tx1559Detail memory txDetail;
txDetail.data = rawDetail.data;
txDetail.from = rawDetail.from;
txDetail.to = rawDetail.to;
txDetail.nonce = _bytesToUint(rawDetail.nonce);
txDetail.txType = _bytesToUint(rawDetail.txType);
txDetail.value = _bytesToUint(rawDetail.value);
txDetail.gas = _bytesToUint(rawDetail.gas);
txDetail.accessList = rawDetail.accessList;
return txDetail;
}
function readTx1559s(string memory path) internal view virtual returns (Tx1559[] memory) {
string memory deployData = vm.readFile(path);
bytes memory parsedDeployData = vm.parseJson(deployData, ".transactions");
RawTx1559[] memory rawTxs = abi.decode(parsedDeployData, (RawTx1559[]));
return rawToConvertedEIPTx1559s(rawTxs);
}
function readTx1559(string memory path, uint256 index) internal view virtual returns (Tx1559 memory) {
string memory deployData = vm.readFile(path);
string memory key = string(abi.encodePacked(".transactions[", vm.toString(index), "]"));
bytes memory parsedDeployData = vm.parseJson(deployData, key);
RawTx1559 memory rawTx = abi.decode(parsedDeployData, (RawTx1559));
return rawToConvertedEIPTx1559(rawTx);
}
// Analogous to readTransactions, but for receipts.
function readReceipts(string memory path) internal view virtual returns (Receipt[] memory) {
string memory deployData = vm.readFile(path);
bytes memory parsedDeployData = vm.parseJson(deployData, ".receipts");
RawReceipt[] memory rawReceipts = abi.decode(parsedDeployData, (RawReceipt[]));
return rawToConvertedReceipts(rawReceipts);
}
function readReceipt(string memory path, uint256 index) internal view virtual returns (Receipt memory) {
string memory deployData = vm.readFile(path);
string memory key = string(abi.encodePacked(".receipts[", vm.toString(index), "]"));
bytes memory parsedDeployData = vm.parseJson(deployData, key);
RawReceipt memory rawReceipt = abi.decode(parsedDeployData, (RawReceipt));
return rawToConvertedReceipt(rawReceipt);
}
function rawToConvertedReceipts(RawReceipt[] memory rawReceipts) internal pure virtual returns (Receipt[] memory) {
Receipt[] memory receipts = new Receipt[](rawReceipts.length);
for (uint256 i; i < rawReceipts.length; i++) {
receipts[i] = rawToConvertedReceipt(rawReceipts[i]);
}
return receipts;
}
function rawToConvertedReceipt(RawReceipt memory rawReceipt) internal pure virtual returns (Receipt memory) {
Receipt memory receipt;
receipt.blockHash = rawReceipt.blockHash;
receipt.to = rawReceipt.to;
receipt.from = rawReceipt.from;
receipt.contractAddress = rawReceipt.contractAddress;
receipt.effectiveGasPrice = _bytesToUint(rawReceipt.effectiveGasPrice);
receipt.cumulativeGasUsed = _bytesToUint(rawReceipt.cumulativeGasUsed);
receipt.gasUsed = _bytesToUint(rawReceipt.gasUsed);
receipt.status = _bytesToUint(rawReceipt.status);
receipt.transactionIndex = _bytesToUint(rawReceipt.transactionIndex);
receipt.blockNumber = _bytesToUint(rawReceipt.blockNumber);
receipt.logs = rawToConvertedReceiptLogs(rawReceipt.logs);
receipt.logsBloom = rawReceipt.logsBloom;
receipt.transactionHash = rawReceipt.transactionHash;
return receipt;
}
function rawToConvertedReceiptLogs(RawReceiptLog[] memory rawLogs)
internal
pure
virtual
returns (ReceiptLog[] memory)
{
ReceiptLog[] memory logs = new ReceiptLog[](rawLogs.length);
for (uint256 i; i < rawLogs.length; i++) {
logs[i].logAddress = rawLogs[i].logAddress;
logs[i].blockHash = rawLogs[i].blockHash;
logs[i].blockNumber = _bytesToUint(rawLogs[i].blockNumber);
logs[i].data = rawLogs[i].data;
logs[i].logIndex = _bytesToUint(rawLogs[i].logIndex);
logs[i].topics = rawLogs[i].topics;
logs[i].transactionIndex = _bytesToUint(rawLogs[i].transactionIndex);
logs[i].transactionLogIndex = _bytesToUint(rawLogs[i].transactionLogIndex);
logs[i].removed = rawLogs[i].removed;
}
return logs;
}
// Deploy a contract by fetching the contract bytecode from
// the artifacts directory
// e.g. `deployCode(code, abi.encode(arg1,arg2,arg3))`
function deployCode(string memory what, bytes memory args) internal virtual returns (address addr) {
bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
/// @solidity memory-safe-assembly
assembly {
addr := create(0, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,bytes): Deployment failed.");
}
function deployCode(string memory what) internal virtual returns (address addr) {
bytes memory bytecode = vm.getCode(what);
/// @solidity memory-safe-assembly
assembly {
addr := create(0, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string): Deployment failed.");
}
/// @dev deploy contract with value on construction
function deployCode(string memory what, bytes memory args, uint256 val) internal virtual returns (address addr) {
bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
/// @solidity memory-safe-assembly
assembly {
addr := create(val, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,bytes,uint256): Deployment failed.");
}
function deployCode(string memory what, uint256 val) internal virtual returns (address addr) {
bytes memory bytecode = vm.getCode(what);
/// @solidity memory-safe-assembly
assembly {
addr := create(val, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,uint256): Deployment failed.");
}
// creates a labeled address and the corresponding private key
function makeAddrAndKey(string memory name) internal virtual returns (address addr, uint256 privateKey) {
privateKey = uint256(keccak256(abi.encodePacked(name)));
addr = vm.addr(privateKey);
vm.label(addr, name);
}
// creates a labeled address
function makeAddr(string memory name) internal virtual returns (address addr) {
(addr,) = makeAddrAndKey(name);
}
// Destroys an account immediately, sending the balance to beneficiary.
// Destroying means: balance will be zero, code will be empty, and nonce will be 0
// This is similar to selfdestruct but not identical: selfdestruct destroys code and nonce
// only after tx ends, this will run immediately.
function destroyAccount(address who, address beneficiary) internal virtual {
uint256 currBalance = who.balance;
vm.etch(who, abi.encode());
vm.deal(who, 0);
vm.resetNonce(who);
uint256 beneficiaryBalance = beneficiary.balance;
vm.deal(beneficiary, currBalance + beneficiaryBalance);
}
// creates a struct containing both a labeled address and the corresponding private key
function makeAccount(string memory name) internal virtual returns (Account memory account) {
(account.addr, account.key) = makeAddrAndKey(name);
}
function deriveRememberKey(string memory mnemonic, uint32 index)
internal
virtual
returns (address who, uint256 privateKey)
{
privateKey = vm.deriveKey(mnemonic, index);
who = vm.rememberKey(privateKey);
}
function _bytesToUint(bytes memory b) private pure returns (uint256) {
require(b.length <= 32, "StdCheats _bytesToUint(bytes): Bytes length exceeds 32.");
return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
}
function isFork() internal view virtual returns (bool status) {
try vm.activeFork() {
status = true;
} catch (bytes memory) {}
}
modifier skipWhenForking() {
if (!isFork()) {
_;
}
}
modifier skipWhenNotForking() {
if (isFork()) {
_;
}
}
modifier noGasMetering() {
vm.pauseGasMetering();
// To prevent turning gas monitoring back on with nested functions that use this modifier,
// we check if gasMetering started in the off position. If it did, we don't want to turn
// it back on until we exit the top level function that used the modifier
//
// i.e. funcA() noGasMetering { funcB() }, where funcB has noGasMetering as well.
// funcA will have `gasStartedOff` as false, funcB will have it as true,
// so we only turn metering back on at the end of the funcA
bool gasStartedOff = gasMeteringOff;
gasMeteringOff = true;
_;
// if gas metering was on when this modifier was called, turn it back on at the end
if (!gasStartedOff) {
gasMeteringOff = false;
vm.resumeGasMetering();
}
}
// We use this complex approach of `_viewChainId` and `_pureChainId` to ensure there are no
// compiler warnings when accessing chain ID in any solidity version supported by forge-std. We
// can't simply access the chain ID in a normal view or pure function because the solc View Pure
// Checker changed `chainid` from pure to view in 0.8.0.
function _viewChainId() private view returns (uint256 chainId) {
// Assembly required since `block.chainid` was introduced in 0.8.0.
assembly {
chainId := chainid()
}
address(this); // Silence warnings in older Solc versions.
}
function _pureChainId() private pure returns (uint256 chainId) {
function() internal view returns (uint256) fnIn = _viewChainId;
function() internal pure returns (uint256) pureChainId;
assembly {
pureChainId := fnIn
}
chainId = pureChainId();
}
}
// Wrappers around cheatcodes to avoid footguns
abstract contract StdCheats is StdCheatsSafe {
using stdStorage for StdStorage;
StdStorage private stdstore;
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
address private constant CONSOLE2_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67;
// Skip forward or rewind time by the specified number of seconds
function skip(uint256 time) internal virtual {
vm.warp(block.timestamp + time);
}
function rewind(uint256 time) internal virtual {
vm.warp(block.timestamp - time);
}
// Setup a prank from an address that has some ether
function hoax(address msgSender) internal virtual {
vm.deal(msgSender, 1 << 128);
vm.prank(msgSender);
}
function hoax(address msgSender, uint256 give) internal virtual {
vm.deal(msgSender, give);
vm.prank(msgSender);
}
function hoax(address msgSender, address origin) internal virtual {
vm.deal(msgSender, 1 << 128);
vm.prank(msgSender, origin);
}
function hoax(address msgSender, address origin, uint256 give) internal virtual {
vm.deal(msgSender, give);
vm.prank(msgSender, origin);
}
// Start perpetual prank from an address that has some ether
function startHoax(address msgSender) internal virtual {
vm.deal(msgSender, 1 << 128);
vm.startPrank(msgSender);
}
function startHoax(address msgSender, uint256 give) internal virtual {
vm.deal(msgSender, give);
vm.startPrank(msgSender);
}
// Start perpetual prank from an address that has some ether
// tx.origin is set to the origin parameter
function startHoax(address msgSender, address origin) internal virtual {
vm.deal(msgSender, 1 << 128);
vm.startPrank(msgSender, origin);
}
function startHoax(address msgSender, address origin, uint256 give) internal virtual {
vm.deal(msgSender, give);
vm.startPrank(msgSender, origin);
}
function changePrank(address msgSender) internal virtual {
console2_log_StdCheats("changePrank is deprecated. Please use vm.startPrank instead.");
vm.stopPrank();
vm.startPrank(msgSender);
}
function changePrank(address msgSender, address txOrigin) internal virtual {
vm.stopPrank();
vm.startPrank(msgSender, txOrigin);
}
// The same as Vm's `deal`
// Use the alternative signature for ERC20 tokens
function deal(address to, uint256 give) internal virtual {
vm.deal(to, give);
}
// Set the balance of an account for any ERC20 token
// Use the alternative signature to update `totalSupply`
function deal(address token, address to, uint256 give) internal virtual {
deal(token, to, give, false);
}
// Set the balance of an account for any ERC1155 token
// Use the alternative signature to update `totalSupply`
function dealERC1155(address token, address to, uint256 id, uint256 give) internal virtual {
dealERC1155(token, to, id, give, false);
}
function deal(address token, address to, uint256 give, bool adjust) internal virtual {
// get current balance
(, bytes memory balData) = token.staticcall(abi.encodeWithSelector(0x70a08231, to));
uint256 prevBal = abi.decode(balData, (uint256));
// update balance
stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(give);
// update total supply
if (adjust) {
(, bytes memory totSupData) = token.staticcall(abi.encodeWithSelector(0x18160ddd));
uint256 totSup = abi.decode(totSupData, (uint256));
if (give < prevBal) {
totSup -= (prevBal - give);
} else {
totSup += (give - prevBal);
}
stdstore.target(token).sig(0x18160ddd).checked_write(totSup);
}
}
function dealERC1155(address token, address to, uint256 id, uint256 give, bool adjust) internal virtual {
// get current balance
(, bytes memory balData) = token.staticcall(abi.encodeWithSelector(0x00fdd58e, to, id));
uint256 prevBal = abi.decode(balData, (uint256));
// update balance
stdstore.target(token).sig(0x00fdd58e).with_key(to).with_key(id).checked_write(give);
// update total supply
if (adjust) {
(, bytes memory totSupData) = token.staticcall(abi.encodeWithSelector(0xbd85b039, id));
require(
totSupData.length != 0,
"StdCheats deal(address,address,uint,uint,bool): target contract is not ERC1155Supply."
);
uint256 totSup = abi.decode(totSupData, (uint256));
if (give < prevBal) {
totSup -= (prevBal - give);
} else {
totSup += (give - prevBal);
}
stdstore.target(token).sig(0xbd85b039).with_key(id).checked_write(totSup);
}
}
function dealERC721(address token, address to, uint256 id) internal virtual {
// check if token id is already minted and the actual owner.
(bool successMinted, bytes memory ownerData) = token.staticcall(abi.encodeWithSelector(0x6352211e, id));
require(successMinted, "StdCheats deal(address,address,uint,bool): id not minted.");
// get owner current balance
(, bytes memory fromBalData) =
token.staticcall(abi.encodeWithSelector(0x70a08231, abi.decode(ownerData, (address))));
uint256 fromPrevBal = abi.decode(fromBalData, (uint256));
// get new user current balance
(, bytes memory toBalData) = token.staticcall(abi.encodeWithSelector(0x70a08231, to));
uint256 toPrevBal = abi.decode(toBalData, (uint256));
// update balances
stdstore.target(token).sig(0x70a08231).with_key(abi.decode(ownerData, (address))).checked_write(--fromPrevBal);
stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(++toPrevBal);
// update owner
stdstore.target(token).sig(0x6352211e).with_key(id).checked_write(to);
}
function deployCodeTo(string memory what, address where) internal virtual {
deployCodeTo(what, "", 0, where);
}
function deployCodeTo(string memory what, bytes memory args, address where) internal virtual {
deployCodeTo(what, args, 0, where);
}
function deployCodeTo(string memory what, bytes memory args, uint256 value, address where) internal virtual {
bytes memory creationCode = vm.getCode(what);
vm.etch(where, abi.encodePacked(creationCode, args));
(bool success, bytes memory runtimeBytecode) = where.call{value: value}("");
require(success, "StdCheats deployCodeTo(string,bytes,uint256,address): Failed to create runtime bytecode.");
vm.etch(where, runtimeBytecode);
}
// Used to prevent the compilation of console, which shortens the compilation time when console is not used elsewhere.
function console2_log_StdCheats(string memory p0) private view {
(bool status,) = address(CONSOLE2_ADDRESS).staticcall(abi.encodeWithSignature("log(string)", p0));
status;
}
}// SPDX-License-Identifier: MIT
// Panics work for versions >=0.8.0, but we lowered the pragma to make this compatible with Test
pragma solidity >=0.6.2 <0.9.0;
library stdError {
bytes public constant assertionError = abi.encodeWithSignature("Panic(uint256)", 0x01);
bytes public constant arithmeticError = abi.encodeWithSignature("Panic(uint256)", 0x11);
bytes public constant divisionError = abi.encodeWithSignature("Panic(uint256)", 0x12);
bytes public constant enumConversionError = abi.encodeWithSignature("Panic(uint256)", 0x21);
bytes public constant encodeStorageError = abi.encodeWithSignature("Panic(uint256)", 0x22);
bytes public constant popError = abi.encodeWithSignature("Panic(uint256)", 0x31);
bytes public constant indexOOBError = abi.encodeWithSignature("Panic(uint256)", 0x32);
bytes public constant memOverflowError = abi.encodeWithSignature("Panic(uint256)", 0x41);
bytes public constant zeroVarError = abi.encodeWithSignature("Panic(uint256)", 0x51);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
abstract contract StdInvariant {
struct FuzzSelector {
address addr;
bytes4[] selectors;
}
struct FuzzArtifactSelector {
string artifact;
bytes4[] selectors;
}
struct FuzzInterface {
address addr;
string[] artifacts;
}
address[] private _excludedContracts;
address[] private _excludedSenders;
address[] private _targetedContracts;
address[] private _targetedSenders;
string[] private _excludedArtifacts;
string[] private _targetedArtifacts;
FuzzArtifactSelector[] private _targetedArtifactSelectors;
FuzzSelector[] private _excludedSelectors;
FuzzSelector[] private _targetedSelectors;
FuzzInterface[] private _targetedInterfaces;
// Functions for users:
// These are intended to be called in tests.
function excludeContract(address newExcludedContract_) internal {
_excludedContracts.push(newExcludedContract_);
}
function excludeSelector(FuzzSelector memory newExcludedSelector_) internal {
_excludedSelectors.push(newExcludedSelector_);
}
function excludeSender(address newExcludedSender_) internal {
_excludedSenders.push(newExcludedSender_);
}
function excludeArtifact(string memory newExcludedArtifact_) internal {
_excludedArtifacts.push(newExcludedArtifact_);
}
function targetArtifact(string memory newTargetedArtifact_) internal {
_targetedArtifacts.push(newTargetedArtifact_);
}
function targetArtifactSelector(FuzzArtifactSelector memory newTargetedArtifactSelector_) internal {
_targetedArtifactSelectors.push(newTargetedArtifactSelector_);
}
function targetContract(address newTargetedContract_) internal {
_targetedContracts.push(newTargetedContract_);
}
function targetSelector(FuzzSelector memory newTargetedSelector_) internal {
_targetedSelectors.push(newTargetedSelector_);
}
function targetSender(address newTargetedSender_) internal {
_targetedSenders.push(newTargetedSender_);
}
function targetInterface(FuzzInterface memory newTargetedInterface_) internal {
_targetedInterfaces.push(newTargetedInterface_);
}
// Functions for forge:
// These are called by forge to run invariant tests and don't need to be called in tests.
function excludeArtifacts() public view returns (string[] memory excludedArtifacts_) {
excludedArtifacts_ = _excludedArtifacts;
}
function excludeContracts() public view returns (address[] memory excludedContracts_) {
excludedContracts_ = _excludedContracts;
}
function excludeSelectors() public view returns (FuzzSelector[] memory excludedSelectors_) {
excludedSelectors_ = _excludedSelectors;
}
function excludeSenders() public view returns (address[] memory excludedSenders_) {
excludedSenders_ = _excludedSenders;
}
function targetArtifacts() public view returns (string[] memory targetedArtifacts_) {
targetedArtifacts_ = _targetedArtifacts;
}
function targetArtifactSelectors() public view returns (FuzzArtifactSelector[] memory targetedArtifactSelectors_) {
targetedArtifactSelectors_ = _targetedArtifactSelectors;
}
function targetContracts() public view returns (address[] memory targetedContracts_) {
targetedContracts_ = _targetedContracts;
}
function targetSelectors() public view returns (FuzzSelector[] memory targetedSelectors_) {
targetedSelectors_ = _targetedSelectors;
}
function targetSenders() public view returns (address[] memory targetedSenders_) {
targetedSenders_ = _targetedSenders;
}
function targetInterfaces() public view returns (FuzzInterface[] memory targetedInterfaces_) {
targetedInterfaces_ = _targetedInterfaces;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;
pragma experimental ABIEncoderV2;
import {VmSafe} from "./Vm.sol";
// Helpers for parsing and writing JSON files
// To parse:
// ```
// using stdJson for string;
// string memory json = vm.readFile("<some_path>");
// json.readUint("<json_path>");
// ```
// To write:
// ```
// using stdJson for string;
// string memory json = "json";
// json.serialize("a", uint256(123));
// string memory semiFinal = json.serialize("b", string("test"));
// string memory finalJson = json.serialize("c", semiFinal);
// finalJson.write("<some_path>");
// ```
library stdJson {
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
function keyExists(string memory json, string memory key) internal view returns (bool) {
return vm.keyExistsJson(json, key);
}
function parseRaw(string memory json, string memory key) internal pure returns (bytes memory) {
return vm.parseJson(json, key);
}
function readUint(string memory json, string memory key) internal pure returns (uint256) {
return vm.parseJsonUint(json, key);
}
function readUintArray(string memory json, string memory key) internal pure returns (uint256[] memory) {
return vm.parseJsonUintArray(json, key);
}
function readInt(string memory json, string memory key) internal pure returns (int256) {
return vm.parseJsonInt(json, key);
}
function readIntArray(string memory json, string memory key) internal pure returns (int256[] memory) {
return vm.parseJsonIntArray(json, key);
}
function readBytes32(string memory json, string memory key) internal pure returns (bytes32) {
return vm.parseJsonBytes32(json, key);
}
function readBytes32Array(string memory json, string memory key) internal pure returns (bytes32[] memory) {
return vm.parseJsonBytes32Array(json, key);
}
function readString(string memory json, string memory key) internal pure returns (string memory) {
return vm.parseJsonString(json, key);
}
function readStringArray(string memory json, string memory key) internal pure returns (string[] memory) {
return vm.parseJsonStringArray(json, key);
}
function readAddress(string memory json, string memory key) internal pure returns (address) {
return vm.parseJsonAddress(json, key);
}
function readAddressArray(string memory json, string memory key) internal pure returns (address[] memory) {
return vm.parseJsonAddressArray(json, key);
}
function readBool(string memory json, string memory key) internal pure returns (bool) {
return vm.parseJsonBool(json, key);
}
function readBoolArray(string memory json, string memory key) internal pure returns (bool[] memory) {
return vm.parseJsonBoolArray(json, key);
}
function readBytes(string memory json, string memory key) internal pure returns (bytes memory) {
return vm.parseJsonBytes(json, key);
}
function readBytesArray(string memory json, string memory key) internal pure returns (bytes[] memory) {
return vm.parseJsonBytesArray(json, key);
}
function readUintOr(string memory json, string memory key, uint256 defaultValue) internal view returns (uint256) {
return keyExists(json, key) ? readUint(json, key) : defaultValue;
}
function readUintArrayOr(string memory json, string memory key, uint256[] memory defaultValue)
internal
view
returns (uint256[] memory)
{
return keyExists(json, key) ? readUintArray(json, key) : defaultValue;
}
function readIntOr(string memory json, string memory key, int256 defaultValue) internal view returns (int256) {
return keyExists(json, key) ? readInt(json, key) : defaultValue;
}
function readIntArrayOr(string memory json, string memory key, int256[] memory defaultValue)
internal
view
returns (int256[] memory)
{
return keyExists(json, key) ? readIntArray(json, key) : defaultValue;
}
function readBytes32Or(string memory json, string memory key, bytes32 defaultValue)
internal
view
returns (bytes32)
{
return keyExists(json, key) ? readBytes32(json, key) : defaultValue;
}
function readBytes32ArrayOr(string memory json, string memory key, bytes32[] memory defaultValue)
internal
view
returns (bytes32[] memory)
{
return keyExists(json, key) ? readBytes32Array(json, key) : defaultValue;
}
function readStringOr(string memory json, string memory key, string memory defaultValue)
internal
view
returns (string memory)
{
return keyExists(json, key) ? readString(json, key) : defaultValue;
}
function readStringArrayOr(string memory json, string memory key, string[] memory defaultValue)
internal
view
returns (string[] memory)
{
return keyExists(json, key) ? readStringArray(json, key) : defaultValue;
}
function readAddressOr(string memory json, string memory key, address defaultValue)
internal
view
returns (address)
{
return keyExists(json, key) ? readAddress(json, key) : defaultValue;
}
function readAddressArrayOr(string memory json, string memory key, address[] memory defaultValue)
internal
view
returns (address[] memory)
{
return keyExists(json, key) ? readAddressArray(json, key) : defaultValue;
}
function readBoolOr(string memory json, string memory key, bool defaultValue) internal view returns (bool) {
return keyExists(json, key) ? readBool(json, key) : defaultValue;
}
function readBoolArrayOr(string memory json, string memory key, bool[] memory defaultValue)
internal
view
returns (bool[] memory)
{
return keyExists(json, key) ? readBoolArray(json, key) : defaultValue;
}
function readBytesOr(string memory json, string memory key, bytes memory defaultValue)
internal
view
returns (bytes memory)
{
return keyExists(json, key) ? readBytes(json, key) : defaultValue;
}
function readBytesArrayOr(string memory json, string memory key, bytes[] memory defaultValue)
internal
view
returns (bytes[] memory)
{
return keyExists(json, key) ? readBytesArray(json, key) : defaultValue;
}
function serialize(string memory jsonKey, string memory rootObject) internal returns (string memory) {
return vm.serializeJson(jsonKey, rootObject);
}
function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) {
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bool[] memory value)
internal
returns (string memory)
{
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) {
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256[] memory value)
internal
returns (string memory)
{
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) {
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256[] memory value)
internal
returns (string memory)
{
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) {
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address[] memory value)
internal
returns (string memory)
{
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) {
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) {
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string[] memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function write(string memory jsonKey, string memory path) internal {
vm.writeJson(jsonKey, path);
}
function write(string memory jsonKey, string memory path, string memory valueKey) internal {
vm.writeJson(jsonKey, path, valueKey);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
library stdMath {
int256 private constant INT256_MIN = -57896044618658097711785492504343953926634992332820282019728792003956564819968;
function abs(int256 a) internal pure returns (uint256) {
// Required or it will fail when `a = type(int256).min`
if (a == INT256_MIN) {
return 57896044618658097711785492504343953926634992332820282019728792003956564819968;
}
return uint256(a > 0 ? a : -a);
}
function delta(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a - b : b - a;
}
function delta(int256 a, int256 b) internal pure returns (uint256) {
// a and b are of the same sign
// this works thanks to two's complement, the left-most bit is the sign bit
if ((a ^ b) > -1) {
return delta(abs(a), abs(b));
}
// a and b are of opposite signs
return abs(a) + abs(b);
}
function percentDelta(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 absDelta = delta(a, b);
return absDelta * 1e18 / b;
}
function percentDelta(int256 a, int256 b) internal pure returns (uint256) {
uint256 absDelta = delta(a, b);
uint256 absB = abs(b);
return absDelta * 1e18 / absB;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {Vm} from "./Vm.sol";
struct FindData {
uint256 slot;
uint256 offsetLeft;
uint256 offsetRight;
bool found;
}
struct StdStorage {
mapping(address => mapping(bytes4 => mapping(bytes32 => FindData))) finds;
bytes32[] _keys;
bytes4 _sig;
uint256 _depth;
address _target;
bytes32 _set;
bool _enable_packed_slots;
bytes _calldata;
}
library stdStorageSafe {
event SlotFound(address who, bytes4 fsig, bytes32 keysHash, uint256 slot);
event WARNING_UninitedSlot(address who, uint256 slot);
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
uint256 constant UINT256_MAX = 115792089237316195423570985008687907853269984665640564039457584007913129639935;
function sigs(string memory sigStr) internal pure returns (bytes4) {
return bytes4(keccak256(bytes(sigStr)));
}
function getCallParams(StdStorage storage self) internal view returns (bytes memory) {
if (self._calldata.length == 0) {
return flatten(self._keys);
} else {
return self._calldata;
}
}
// Calls target contract with configured parameters
function callTarget(StdStorage storage self) internal view returns (bool, bytes32) {
bytes memory cald = abi.encodePacked(self._sig, getCallParams(self));
(bool success, bytes memory rdat) = self._target.staticcall(cald);
bytes32 result = bytesToBytes32(rdat, 32 * self._depth);
return (success, result);
}
// Tries mutating slot value to determine if the targeted value is stored in it.
// If current value is 0, then we are setting slot value to type(uint256).max
// Otherwise, we set it to 0. That way, return value should always be affected.
function checkSlotMutatesCall(StdStorage storage self, bytes32 slot) internal returns (bool) {
bytes32 prevSlotValue = vm.load(self._target, slot);
(bool success, bytes32 prevReturnValue) = callTarget(self);
bytes32 testVal = prevReturnValue == bytes32(0) ? bytes32(UINT256_MAX) : bytes32(0);
vm.store(self._target, slot, testVal);
(, bytes32 newReturnValue) = callTarget(self);
vm.store(self._target, slot, prevSlotValue);
return (success && (prevReturnValue != newReturnValue));
}
// Tries setting one of the bits in slot to 1 until return value changes.
// Index of resulted bit is an offset packed slot has from left/right side
function findOffset(StdStorage storage self, bytes32 slot, bool left) internal returns (bool, uint256) {
for (uint256 offset = 0; offset < 256; offset++) {
uint256 valueToPut = left ? (1 << (255 - offset)) : (1 << offset);
vm.store(self._target, slot, bytes32(valueToPut));
(bool success, bytes32 data) = callTarget(self);
if (success && (uint256(data) > 0)) {
return (true, offset);
}
}
return (false, 0);
}
function findOffsets(StdStorage storage self, bytes32 slot) internal returns (bool, uint256, uint256) {
bytes32 prevSlotValue = vm.load(self._target, slot);
(bool foundLeft, uint256 offsetLeft) = findOffset(self, slot, true);
(bool foundRight, uint256 offsetRight) = findOffset(self, slot, false);
// `findOffset` may mutate slot value, so we are setting it to initial value
vm.store(self._target, slot, prevSlotValue);
return (foundLeft && foundRight, offsetLeft, offsetRight);
}
function find(StdStorage storage self) internal returns (FindData storage) {
return find(self, true);
}
/// @notice find an arbitrary storage slot given a function sig, input data, address of the contract and a value to check against
// slot complexity:
// if flat, will be bytes32(uint256(uint));
// if map, will be keccak256(abi.encode(key, uint(slot)));
// if deep map, will be keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))));
// if map struct, will be bytes32(uint256(keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))))) + structFieldDepth);
function find(StdStorage storage self, bool _clear) internal returns (FindData storage) {
address who = self._target;
bytes4 fsig = self._sig;
uint256 field_depth = self._depth;
bytes memory params = getCallParams(self);
// calldata to test against
if (self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found) {
if (_clear) {
clear(self);
}
return self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
}
vm.record();
(, bytes32 callResult) = callTarget(self);
(bytes32[] memory reads,) = vm.accesses(address(who));
if (reads.length == 0) {
revert("stdStorage find(StdStorage): No storage use detected for target.");
} else {
for (uint256 i = reads.length; --i >= 0;) {
bytes32 prev = vm.load(who, reads[i]);
if (prev == bytes32(0)) {
emit WARNING_UninitedSlot(who, uint256(reads[i]));
}
if (!checkSlotMutatesCall(self, reads[i])) {
continue;
}
(uint256 offsetLeft, uint256 offsetRight) = (0, 0);
if (self._enable_packed_slots) {
bool found;
(found, offsetLeft, offsetRight) = findOffsets(self, reads[i]);
if (!found) {
continue;
}
}
// Check that value between found offsets is equal to the current call result
uint256 curVal = (uint256(prev) & getMaskByOffsets(offsetLeft, offsetRight)) >> offsetRight;
if (uint256(callResult) != curVal) {
continue;
}
emit SlotFound(who, fsig, keccak256(abi.encodePacked(params, field_depth)), uint256(reads[i]));
self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))] =
FindData(uint256(reads[i]), offsetLeft, offsetRight, true);
break;
}
}
require(
self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found,
"stdStorage find(StdStorage): Slot(s) not found."
);
if (_clear) {
clear(self);
}
return self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
}
function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
self._target = _target;
return self;
}
function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
self._sig = _sig;
return self;
}
function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
self._sig = sigs(_sig);
return self;
}
function with_calldata(StdStorage storage self, bytes memory _calldata) internal returns (StdStorage storage) {
self._calldata = _calldata;
return self;
}
function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
self._keys.push(bytes32(uint256(uint160(who))));
return self;
}
function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
self._keys.push(bytes32(amt));
return self;
}
function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
self._keys.push(key);
return self;
}
function enable_packed_slots(StdStorage storage self) internal returns (StdStorage storage) {
self._enable_packed_slots = true;
return self;
}
function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
self._depth = _depth;
return self;
}
function read(StdStorage storage self) private returns (bytes memory) {
FindData storage data = find(self, false);
uint256 mask = getMaskByOffsets(data.offsetLeft, data.offsetRight);
uint256 value = (uint256(vm.load(self._target, bytes32(data.slot))) & mask) >> data.offsetRight;
clear(self);
return abi.encode(value);
}
function read_bytes32(StdStorage storage self) internal returns (bytes32) {
return abi.decode(read(self), (bytes32));
}
function read_bool(StdStorage storage self) internal returns (bool) {
int256 v = read_int(self);
if (v == 0) return false;
if (v == 1) return true;
revert("stdStorage read_bool(StdStorage): Cannot decode. Make sure you are reading a bool.");
}
function read_address(StdStorage storage self) internal returns (address) {
return abi.decode(read(self), (address));
}
function read_uint(StdStorage storage self) internal returns (uint256) {
return abi.decode(read(self), (uint256));
}
function read_int(StdStorage storage self) internal returns (int256) {
return abi.decode(read(self), (int256));
}
function parent(StdStorage storage self) internal returns (uint256, bytes32) {
address who = self._target;
uint256 field_depth = self._depth;
vm.startMappingRecording();
uint256 child = find(self, true).slot - field_depth;
(bool found, bytes32 key, bytes32 parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(child));
if (!found) {
revert(
"stdStorage read_bool(StdStorage): Cannot find parent. Make sure you give a slot and startMappingRecording() has been called."
);
}
return (uint256(parent_slot), key);
}
function root(StdStorage storage self) internal returns (uint256) {
address who = self._target;
uint256 field_depth = self._depth;
vm.startMappingRecording();
uint256 child = find(self, true).slot - field_depth;
bool found;
bytes32 root_slot;
bytes32 parent_slot;
(found,, parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(child));
if (!found) {
revert(
"stdStorage read_bool(StdStorage): Cannot find parent. Make sure you give a slot and startMappingRecording() has been called."
);
}
while (found) {
root_slot = parent_slot;
(found,, parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(root_slot));
}
return uint256(root_slot);
}
function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) {
bytes32 out;
uint256 max = b.length > 32 ? 32 : b.length;
for (uint256 i = 0; i < max; i++) {
out |= bytes32(b[offset + i] & 0xFF) >> (i * 8);
}
return out;
}
function flatten(bytes32[] memory b) private pure returns (bytes memory) {
bytes memory result = new bytes(b.length * 32);
for (uint256 i = 0; i < b.length; i++) {
bytes32 k = b[i];
/// @solidity memory-safe-assembly
assembly {
mstore(add(result, add(32, mul(32, i))), k)
}
}
return result;
}
function clear(StdStorage storage self) internal {
delete self._target;
delete self._sig;
delete self._keys;
delete self._depth;
delete self._enable_packed_slots;
delete self._calldata;
}
// Returns mask which contains non-zero bits for values between `offsetLeft` and `offsetRight`
// (slotValue & mask) >> offsetRight will be the value of the given packed variable
function getMaskByOffsets(uint256 offsetLeft, uint256 offsetRight) internal pure returns (uint256 mask) {
// mask = ((1 << (256 - (offsetRight + offsetLeft))) - 1) << offsetRight;
// using assembly because (1 << 256) causes overflow
assembly {
mask := shl(offsetRight, sub(shl(sub(256, add(offsetRight, offsetLeft)), 1), 1))
}
}
// Returns slot value with updated packed variable.
function getUpdatedSlotValue(bytes32 curValue, uint256 varValue, uint256 offsetLeft, uint256 offsetRight)
internal
pure
returns (bytes32 newValue)
{
return bytes32((uint256(curValue) & ~getMaskByOffsets(offsetLeft, offsetRight)) | (varValue << offsetRight));
}
}
library stdStorage {
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
function sigs(string memory sigStr) internal pure returns (bytes4) {
return stdStorageSafe.sigs(sigStr);
}
function find(StdStorage storage self) internal returns (uint256) {
return find(self, true);
}
function find(StdStorage storage self, bool _clear) internal returns (uint256) {
return stdStorageSafe.find(self, _clear).slot;
}
function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
return stdStorageSafe.target(self, _target);
}
function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
return stdStorageSafe.sig(self, _sig);
}
function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
return stdStorageSafe.sig(self, _sig);
}
function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, who);
}
function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, amt);
}
function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, key);
}
function with_calldata(StdStorage storage self, bytes memory _calldata) internal returns (StdStorage storage) {
return stdStorageSafe.with_calldata(self, _calldata);
}
function enable_packed_slots(StdStorage storage self) internal returns (StdStorage storage) {
return stdStorageSafe.enable_packed_slots(self);
}
function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
return stdStorageSafe.depth(self, _depth);
}
function clear(StdStorage storage self) internal {
stdStorageSafe.clear(self);
}
function checked_write(StdStorage storage self, address who) internal {
checked_write(self, bytes32(uint256(uint160(who))));
}
function checked_write(StdStorage storage self, uint256 amt) internal {
checked_write(self, bytes32(amt));
}
function checked_write_int(StdStorage storage self, int256 val) internal {
checked_write(self, bytes32(uint256(val)));
}
function checked_write(StdStorage storage self, bool write) internal {
bytes32 t;
/// @solidity memory-safe-assembly
assembly {
t := write
}
checked_write(self, t);
}
function checked_write(StdStorage storage self, bytes32 set) internal {
address who = self._target;
bytes4 fsig = self._sig;
uint256 field_depth = self._depth;
bytes memory params = stdStorageSafe.getCallParams(self);
if (!self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found) {
find(self, false);
}
FindData storage data = self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
if ((data.offsetLeft + data.offsetRight) > 0) {
uint256 maxVal = 2 ** (256 - (data.offsetLeft + data.offsetRight));
require(
uint256(set) < maxVal,
string(
abi.encodePacked(
"stdStorage find(StdStorage): Packed slot. We can't fit value greater than ",
vm.toString(maxVal)
)
)
);
}
bytes32 curVal = vm.load(who, bytes32(data.slot));
bytes32 valToSet = stdStorageSafe.getUpdatedSlotValue(curVal, uint256(set), data.offsetLeft, data.offsetRight);
vm.store(who, bytes32(data.slot), valToSet);
(bool success, bytes32 callResult) = stdStorageSafe.callTarget(self);
if (!success || callResult != set) {
vm.store(who, bytes32(data.slot), curVal);
revert("stdStorage find(StdStorage): Failed to write value.");
}
clear(self);
}
function read_bytes32(StdStorage storage self) internal returns (bytes32) {
return stdStorageSafe.read_bytes32(self);
}
function read_bool(StdStorage storage self) internal returns (bool) {
return stdStorageSafe.read_bool(self);
}
function read_address(StdStorage storage self) internal returns (address) {
return stdStorageSafe.read_address(self);
}
function read_uint(StdStorage storage self) internal returns (uint256) {
return stdStorageSafe.read_uint(self);
}
function read_int(StdStorage storage self) internal returns (int256) {
return stdStorageSafe.read_int(self);
}
function parent(StdStorage storage self) internal returns (uint256, bytes32) {
return stdStorageSafe.parent(self);
}
function root(StdStorage storage self) internal returns (uint256) {
return stdStorageSafe.root(self);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;
import {VmSafe} from "./Vm.sol";
library StdStyle {
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
string constant RED = "\u001b[91m";
string constant GREEN = "\u001b[92m";
string constant YELLOW = "\u001b[93m";
string constant BLUE = "\u001b[94m";
string constant MAGENTA = "\u001b[95m";
string constant CYAN = "\u001b[96m";
string constant BOLD = "\u001b[1m";
string constant DIM = "\u001b[2m";
string constant ITALIC = "\u001b[3m";
string constant UNDERLINE = "\u001b[4m";
string constant INVERSE = "\u001b[7m";
string constant RESET = "\u001b[0m";
function styleConcat(string memory style, string memory self) private pure returns (string memory) {
return string(abi.encodePacked(style, self, RESET));
}
function red(string memory self) internal pure returns (string memory) {
return styleConcat(RED, self);
}
function red(uint256 self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function red(int256 self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function red(address self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function red(bool self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function redBytes(bytes memory self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function redBytes32(bytes32 self) internal pure returns (string memory) {
return red(vm.toString(self));
}
function green(string memory self) internal pure returns (string memory) {
return styleConcat(GREEN, self);
}
function green(uint256 self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function green(int256 self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function green(address self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function green(bool self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function greenBytes(bytes memory self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function greenBytes32(bytes32 self) internal pure returns (string memory) {
return green(vm.toString(self));
}
function yellow(string memory self) internal pure returns (string memory) {
return styleConcat(YELLOW, self);
}
function yellow(uint256 self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function yellow(int256 self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function yellow(address self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function yellow(bool self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function yellowBytes(bytes memory self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function yellowBytes32(bytes32 self) internal pure returns (string memory) {
return yellow(vm.toString(self));
}
function blue(string memory self) internal pure returns (string memory) {
return styleConcat(BLUE, self);
}
function blue(uint256 self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function blue(int256 self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function blue(address self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function blue(bool self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function blueBytes(bytes memory self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function blueBytes32(bytes32 self) internal pure returns (string memory) {
return blue(vm.toString(self));
}
function magenta(string memory self) internal pure returns (string memory) {
return styleConcat(MAGENTA, self);
}
function magenta(uint256 self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function magenta(int256 self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function magenta(address self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function magenta(bool self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function magentaBytes(bytes memory self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function magentaBytes32(bytes32 self) internal pure returns (string memory) {
return magenta(vm.toString(self));
}
function cyan(string memory self) internal pure returns (string memory) {
return styleConcat(CYAN, self);
}
function cyan(uint256 self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function cyan(int256 self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function cyan(address self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function cyan(bool self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function cyanBytes(bytes memory self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function cyanBytes32(bytes32 self) internal pure returns (string memory) {
return cyan(vm.toString(self));
}
function bold(string memory self) internal pure returns (string memory) {
return styleConcat(BOLD, self);
}
function bold(uint256 self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function bold(int256 self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function bold(address self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function bold(bool self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function boldBytes(bytes memory self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function boldBytes32(bytes32 self) internal pure returns (string memory) {
return bold(vm.toString(self));
}
function dim(string memory self) internal pure returns (string memory) {
return styleConcat(DIM, self);
}
function dim(uint256 self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function dim(int256 self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function dim(address self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function dim(bool self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function dimBytes(bytes memory self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function dimBytes32(bytes32 self) internal pure returns (string memory) {
return dim(vm.toString(self));
}
function italic(string memory self) internal pure returns (string memory) {
return styleConcat(ITALIC, self);
}
function italic(uint256 self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function italic(int256 self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function italic(address self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function italic(bool self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function italicBytes(bytes memory self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function italicBytes32(bytes32 self) internal pure returns (string memory) {
return italic(vm.toString(self));
}
function underline(string memory self) internal pure returns (string memory) {
return styleConcat(UNDERLINE, self);
}
function underline(uint256 self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function underline(int256 self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function underline(address self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function underline(bool self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function underlineBytes(bytes memory self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function underlineBytes32(bytes32 self) internal pure returns (string memory) {
return underline(vm.toString(self));
}
function inverse(string memory self) internal pure returns (string memory) {
return styleConcat(INVERSE, self);
}
function inverse(uint256 self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
function inverse(int256 self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
function inverse(address self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
function inverse(bool self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
function inverseBytes(bytes memory self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
function inverseBytes32(bytes32 self) internal pure returns (string memory) {
return inverse(vm.toString(self));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;
pragma experimental ABIEncoderV2;
import {VmSafe} from "./Vm.sol";
// Helpers for parsing and writing TOML files
// To parse:
// ```
// using stdToml for string;
// string memory toml = vm.readFile("<some_path>");
// toml.readUint("<json_path>");
// ```
// To write:
// ```
// using stdToml for string;
// string memory json = "json";
// json.serialize("a", uint256(123));
// string memory semiFinal = json.serialize("b", string("test"));
// string memory finalJson = json.serialize("c", semiFinal);
// finalJson.write("<some_path>");
// ```
library stdToml {
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
function keyExists(string memory toml, string memory key) internal view returns (bool) {
return vm.keyExistsToml(toml, key);
}
function parseRaw(string memory toml, string memory key) internal pure returns (bytes memory) {
return vm.parseToml(toml, key);
}
function readUint(string memory toml, string memory key) internal pure returns (uint256) {
return vm.parseTomlUint(toml, key);
}
function readUintArray(string memory toml, string memory key) internal pure returns (uint256[] memory) {
return vm.parseTomlUintArray(toml, key);
}
function readInt(string memory toml, string memory key) internal pure returns (int256) {
return vm.parseTomlInt(toml, key);
}
function readIntArray(string memory toml, string memory key) internal pure returns (int256[] memory) {
return vm.parseTomlIntArray(toml, key);
}
function readBytes32(string memory toml, string memory key) internal pure returns (bytes32) {
return vm.parseTomlBytes32(toml, key);
}
function readBytes32Array(string memory toml, string memory key) internal pure returns (bytes32[] memory) {
return vm.parseTomlBytes32Array(toml, key);
}
function readString(string memory toml, string memory key) internal pure returns (string memory) {
return vm.parseTomlString(toml, key);
}
function readStringArray(string memory toml, string memory key) internal pure returns (string[] memory) {
return vm.parseTomlStringArray(toml, key);
}
function readAddress(string memory toml, string memory key) internal pure returns (address) {
return vm.parseTomlAddress(toml, key);
}
function readAddressArray(string memory toml, string memory key) internal pure returns (address[] memory) {
return vm.parseTomlAddressArray(toml, key);
}
function readBool(string memory toml, string memory key) internal pure returns (bool) {
return vm.parseTomlBool(toml, key);
}
function readBoolArray(string memory toml, string memory key) internal pure returns (bool[] memory) {
return vm.parseTomlBoolArray(toml, key);
}
function readBytes(string memory toml, string memory key) internal pure returns (bytes memory) {
return vm.parseTomlBytes(toml, key);
}
function readBytesArray(string memory toml, string memory key) internal pure returns (bytes[] memory) {
return vm.parseTomlBytesArray(toml, key);
}
function readUintOr(string memory toml, string memory key, uint256 defaultValue) internal view returns (uint256) {
return keyExists(toml, key) ? readUint(toml, key) : defaultValue;
}
function readUintArrayOr(string memory toml, string memory key, uint256[] memory defaultValue)
internal
view
returns (uint256[] memory)
{
return keyExists(toml, key) ? readUintArray(toml, key) : defaultValue;
}
function readIntOr(string memory toml, string memory key, int256 defaultValue) internal view returns (int256) {
return keyExists(toml, key) ? readInt(toml, key) : defaultValue;
}
function readIntArrayOr(string memory toml, string memory key, int256[] memory defaultValue)
internal
view
returns (int256[] memory)
{
return keyExists(toml, key) ? readIntArray(toml, key) : defaultValue;
}
function readBytes32Or(string memory toml, string memory key, bytes32 defaultValue)
internal
view
returns (bytes32)
{
return keyExists(toml, key) ? readBytes32(toml, key) : defaultValue;
}
function readBytes32ArrayOr(string memory toml, string memory key, bytes32[] memory defaultValue)
internal
view
returns (bytes32[] memory)
{
return keyExists(toml, key) ? readBytes32Array(toml, key) : defaultValue;
}
function readStringOr(string memory toml, string memory key, string memory defaultValue)
internal
view
returns (string memory)
{
return keyExists(toml, key) ? readString(toml, key) : defaultValue;
}
function readStringArrayOr(string memory toml, string memory key, string[] memory defaultValue)
internal
view
returns (string[] memory)
{
return keyExists(toml, key) ? readStringArray(toml, key) : defaultValue;
}
function readAddressOr(string memory toml, string memory key, address defaultValue)
internal
view
returns (address)
{
return keyExists(toml, key) ? readAddress(toml, key) : defaultValue;
}
function readAddressArrayOr(string memory toml, string memory key, address[] memory defaultValue)
internal
view
returns (address[] memory)
{
return keyExists(toml, key) ? readAddressArray(toml, key) : defaultValue;
}
function readBoolOr(string memory toml, string memory key, bool defaultValue) internal view returns (bool) {
return keyExists(toml, key) ? readBool(toml, key) : defaultValue;
}
function readBoolArrayOr(string memory toml, string memory key, bool[] memory defaultValue)
internal
view
returns (bool[] memory)
{
return keyExists(toml, key) ? readBoolArray(toml, key) : defaultValue;
}
function readBytesOr(string memory toml, string memory key, bytes memory defaultValue)
internal
view
returns (bytes memory)
{
return keyExists(toml, key) ? readBytes(toml, key) : defaultValue;
}
function readBytesArrayOr(string memory toml, string memory key, bytes[] memory defaultValue)
internal
view
returns (bytes[] memory)
{
return keyExists(toml, key) ? readBytesArray(toml, key) : defaultValue;
}
function serialize(string memory jsonKey, string memory rootObject) internal returns (string memory) {
return vm.serializeJson(jsonKey, rootObject);
}
function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) {
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bool[] memory value)
internal
returns (string memory)
{
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) {
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256[] memory value)
internal
returns (string memory)
{
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) {
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256[] memory value)
internal
returns (string memory)
{
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) {
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address[] memory value)
internal
returns (string memory)
{
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) {
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) {
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string[] memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function write(string memory jsonKey, string memory path) internal {
vm.writeToml(jsonKey, path);
}
function write(string memory jsonKey, string memory path, string memory valueKey) internal {
vm.writeToml(jsonKey, path, valueKey);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import {IMulticall3} from "./interfaces/IMulticall3.sol";
import {MockERC20} from "./mocks/MockERC20.sol";
import {MockERC721} from "./mocks/MockERC721.sol";
import {VmSafe} from "./Vm.sol";
abstract contract StdUtils {
/*//////////////////////////////////////////////////////////////////////////
CONSTANTS
//////////////////////////////////////////////////////////////////////////*/
IMulticall3 private constant multicall = IMulticall3(0xcA11bde05977b3631167028862bE2a173976CA11);
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
address private constant CONSOLE2_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67;
uint256 private constant INT256_MIN_ABS =
57896044618658097711785492504343953926634992332820282019728792003956564819968;
uint256 private constant SECP256K1_ORDER =
115792089237316195423570985008687907852837564279074904382605163141518161494337;
uint256 private constant UINT256_MAX =
115792089237316195423570985008687907853269984665640564039457584007913129639935;
// Used by default when deploying with create2, https://github.com/Arachnid/deterministic-deployment-proxy.
address private constant CREATE2_FACTORY = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
/*//////////////////////////////////////////////////////////////////////////
INTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
function _bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) {
require(min <= max, "StdUtils bound(uint256,uint256,uint256): Max is less than min.");
// If x is between min and max, return x directly. This is to ensure that dictionary values
// do not get shifted if the min is nonzero. More info: https://github.com/foundry-rs/forge-std/issues/188
if (x >= min && x <= max) return x;
uint256 size = max - min + 1;
// If the value is 0, 1, 2, 3, wrap that to min, min+1, min+2, min+3. Similarly for the UINT256_MAX side.
// This helps ensure coverage of the min/max values.
if (x <= 3 && size > x) return min + x;
if (x >= UINT256_MAX - 3 && size > UINT256_MAX - x) return max - (UINT256_MAX - x);
// Otherwise, wrap x into the range [min, max], i.e. the range is inclusive.
if (x > max) {
uint256 diff = x - max;
uint256 rem = diff % size;
if (rem == 0) return max;
result = min + rem - 1;
} else if (x < min) {
uint256 diff = min - x;
uint256 rem = diff % size;
if (rem == 0) return min;
result = max - rem + 1;
}
}
function bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) {
result = _bound(x, min, max);
console2_log_StdUtils("Bound result", result);
}
function _bound(int256 x, int256 min, int256 max) internal pure virtual returns (int256 result) {
require(min <= max, "StdUtils bound(int256,int256,int256): Max is less than min.");
// Shifting all int256 values to uint256 to use _bound function. The range of two types are:
// int256 : -(2**255) ~ (2**255 - 1)
// uint256: 0 ~ (2**256 - 1)
// So, add 2**255, INT256_MIN_ABS to the integer values.
//
// If the given integer value is -2**255, we cannot use `-uint256(-x)` because of the overflow.
// So, use `~uint256(x) + 1` instead.
uint256 _x = x < 0 ? (INT256_MIN_ABS - ~uint256(x) - 1) : (uint256(x) + INT256_MIN_ABS);
uint256 _min = min < 0 ? (INT256_MIN_ABS - ~uint256(min) - 1) : (uint256(min) + INT256_MIN_ABS);
uint256 _max = max < 0 ? (INT256_MIN_ABS - ~uint256(max) - 1) : (uint256(max) + INT256_MIN_ABS);
uint256 y = _bound(_x, _min, _max);
// To move it back to int256 value, subtract INT256_MIN_ABS at here.
result = y < INT256_MIN_ABS ? int256(~(INT256_MIN_ABS - y) + 1) : int256(y - INT256_MIN_ABS);
}
function bound(int256 x, int256 min, int256 max) internal pure virtual returns (int256 result) {
result = _bound(x, min, max);
console2_log_StdUtils("Bound result", vm.toString(result));
}
function boundPrivateKey(uint256 privateKey) internal pure virtual returns (uint256 result) {
result = _bound(privateKey, 1, SECP256K1_ORDER - 1);
}
function bytesToUint(bytes memory b) internal pure virtual returns (uint256) {
require(b.length <= 32, "StdUtils bytesToUint(bytes): Bytes length exceeds 32.");
return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
}
/// @dev Compute the address a contract will be deployed at for a given deployer address and nonce
/// @notice adapted from Solmate implementation (https://github.com/Rari-Capital/solmate/blob/main/src/utils/LibRLP.sol)
function computeCreateAddress(address deployer, uint256 nonce) internal pure virtual returns (address) {
console2_log_StdUtils("computeCreateAddress is deprecated. Please use vm.computeCreateAddress instead.");
return vm.computeCreateAddress(deployer, nonce);
}
function computeCreate2Address(bytes32 salt, bytes32 initcodeHash, address deployer)
internal
pure
virtual
returns (address)
{
console2_log_StdUtils("computeCreate2Address is deprecated. Please use vm.computeCreate2Address instead.");
return vm.computeCreate2Address(salt, initcodeHash, deployer);
}
/// @dev returns the address of a contract created with CREATE2 using the default CREATE2 deployer
function computeCreate2Address(bytes32 salt, bytes32 initCodeHash) internal pure returns (address) {
console2_log_StdUtils("computeCreate2Address is deprecated. Please use vm.computeCreate2Address instead.");
return vm.computeCreate2Address(salt, initCodeHash);
}
/// @dev returns an initialized mock ERC20 contract
function deployMockERC20(string memory name, string memory symbol, uint8 decimals)
internal
returns (MockERC20 mock)
{
mock = new MockERC20();
mock.initialize(name, symbol, decimals);
}
/// @dev returns an initialized mock ERC721 contract
function deployMockERC721(string memory name, string memory symbol) internal returns (MockERC721 mock) {
mock = new MockERC721();
mock.initialize(name, symbol);
}
/// @dev returns the hash of the init code (creation code + no args) used in CREATE2 with no constructor arguments
/// @param creationCode the creation code of a contract C, as returned by type(C).creationCode
function hashInitCode(bytes memory creationCode) internal pure returns (bytes32) {
return hashInitCode(creationCode, "");
}
/// @dev returns the hash of the init code (creation code + ABI-encoded args) used in CREATE2
/// @param creationCode the creation code of a contract C, as returned by type(C).creationCode
/// @param args the ABI-encoded arguments to the constructor of C
function hashInitCode(bytes memory creationCode, bytes memory args) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(creationCode, args));
}
// Performs a single call with Multicall3 to query the ERC-20 token balances of the given addresses.
function getTokenBalances(address token, address[] memory addresses)
internal
virtual
returns (uint256[] memory balances)
{
uint256 tokenCodeSize;
assembly {
tokenCodeSize := extcodesize(token)
}
require(tokenCodeSize > 0, "StdUtils getTokenBalances(address,address[]): Token address is not a contract.");
// ABI encode the aggregate call to Multicall3.
uint256 length = addresses.length;
IMulticall3.Call[] memory calls = new IMulticall3.Call[](length);
for (uint256 i = 0; i < length; ++i) {
// 0x70a08231 = bytes4("balanceOf(address)"))
calls[i] = IMulticall3.Call({target: token, callData: abi.encodeWithSelector(0x70a08231, (addresses[i]))});
}
// Make the aggregate call.
(, bytes[] memory returnData) = multicall.aggregate(calls);
// ABI decode the return data and return the balances.
balances = new uint256[](length);
for (uint256 i = 0; i < length; ++i) {
balances[i] = abi.decode(returnData[i], (uint256));
}
}
/*//////////////////////////////////////////////////////////////////////////
PRIVATE FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/
function addressFromLast20Bytes(bytes32 bytesValue) private pure returns (address) {
return address(uint160(uint256(bytesValue)));
}
// This section is used to prevent the compilation of console, which shortens the compilation time when console is
// not used elsewhere. We also trick the compiler into letting us make the console log methods as `pure` to avoid
// any breaking changes to function signatures.
function _castLogPayloadViewToPure(function(bytes memory) internal view fnIn)
internal
pure
returns (function(bytes memory) internal pure fnOut)
{
assembly {
fnOut := fnIn
}
}
function _sendLogPayload(bytes memory payload) internal pure {
_castLogPayloadViewToPure(_sendLogPayloadView)(payload);
}
function _sendLogPayloadView(bytes memory payload) private view {
uint256 payloadLength = payload.length;
address consoleAddress = CONSOLE2_ADDRESS;
/// @solidity memory-safe-assembly
assembly {
let payloadStart := add(payload, 32)
let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0)
}
}
function console2_log_StdUtils(string memory p0) private pure {
_sendLogPayload(abi.encodeWithSignature("log(string)", p0));
}
function console2_log_StdUtils(string memory p0, uint256 p1) private pure {
_sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1));
}
function console2_log_StdUtils(string memory p0, string memory p1) private pure {
_sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
}
}// Automatically @generated by scripts/vm.py. Do not modify manually.
// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
/// The `VmSafe` interface does not allow manipulation of the EVM state or other actions that may
/// result in Script simulations differing from on-chain execution. It is recommended to only use
/// these cheats in scripts.
interface VmSafe {
/// A modification applied to either `msg.sender` or `tx.origin`. Returned by `readCallers`.
enum CallerMode {
// No caller modification is currently active.
None,
// A one time broadcast triggered by a `vm.broadcast()` call is currently active.
Broadcast,
// A recurrent broadcast triggered by a `vm.startBroadcast()` call is currently active.
RecurrentBroadcast,
// A one time prank triggered by a `vm.prank()` call is currently active.
Prank,
// A recurrent prank triggered by a `vm.startPrank()` call is currently active.
RecurrentPrank
}
/// The kind of account access that occurred.
enum AccountAccessKind {
// The account was called.
Call,
// The account was called via delegatecall.
DelegateCall,
// The account was called via callcode.
CallCode,
// The account was called via staticcall.
StaticCall,
// The account was created.
Create,
// The account was selfdestructed.
SelfDestruct,
// Synthetic access indicating the current context has resumed after a previous sub-context (AccountAccess).
Resume,
// The account's balance was read.
Balance,
// The account's codesize was read.
Extcodesize,
// The account's codehash was read.
Extcodehash,
// The account's code was copied.
Extcodecopy
}
/// Forge execution contexts.
enum ForgeContext {
// Test group execution context (test, coverage or snapshot).
TestGroup,
// `forge test` execution context.
Test,
// `forge coverage` execution context.
Coverage,
// `forge snapshot` execution context.
Snapshot,
// Script group execution context (dry run, broadcast or resume).
ScriptGroup,
// `forge script` execution context.
ScriptDryRun,
// `forge script --broadcast` execution context.
ScriptBroadcast,
// `forge script --resume` execution context.
ScriptResume,
// Unknown `forge` execution context.
Unknown
}
/// An Ethereum log. Returned by `getRecordedLogs`.
struct Log {
// The topics of the log, including the signature, if any.
bytes32[] topics;
// The raw data of the log.
bytes data;
// The address of the log's emitter.
address emitter;
}
/// An RPC URL and its alias. Returned by `rpcUrlStructs`.
struct Rpc {
// The alias of the RPC URL.
string key;
// The RPC URL.
string url;
}
/// An RPC log object. Returned by `eth_getLogs`.
struct EthGetLogs {
// The address of the log's emitter.
address emitter;
// The topics of the log, including the signature, if any.
bytes32[] topics;
// The raw data of the log.
bytes data;
// The block hash.
bytes32 blockHash;
// The block number.
uint64 blockNumber;
// The transaction hash.
bytes32 transactionHash;
// The transaction index in the block.
uint64 transactionIndex;
// The log index.
uint256 logIndex;
// Whether the log was removed.
bool removed;
}
/// A single entry in a directory listing. Returned by `readDir`.
struct DirEntry {
// The error message, if any.
string errorMessage;
// The path of the entry.
string path;
// The depth of the entry.
uint64 depth;
// Whether the entry is a directory.
bool isDir;
// Whether the entry is a symlink.
bool isSymlink;
}
/// Metadata information about a file.
/// This structure is returned from the `fsMetadata` function and represents known
/// metadata about a file such as its permissions, size, modification
/// times, etc.
struct FsMetadata {
// True if this metadata is for a directory.
bool isDir;
// True if this metadata is for a symlink.
bool isSymlink;
// The size of the file, in bytes, this metadata is for.
uint256 length;
// True if this metadata is for a readonly (unwritable) file.
bool readOnly;
// The last modification time listed in this metadata.
uint256 modified;
// The last access time of this metadata.
uint256 accessed;
// The creation time listed in this metadata.
uint256 created;
}
/// A wallet with a public and private key.
struct Wallet {
// The wallet's address.
address addr;
// The wallet's public key `X`.
uint256 publicKeyX;
// The wallet's public key `Y`.
uint256 publicKeyY;
// The wallet's private key.
uint256 privateKey;
}
/// The result of a `tryFfi` call.
struct FfiResult {
// The exit code of the call.
int32 exitCode;
// The optionally hex-decoded `stdout` data.
bytes stdout;
// The `stderr` data.
bytes stderr;
}
/// Information on the chain and fork.
struct ChainInfo {
// The fork identifier. Set to zero if no fork is active.
uint256 forkId;
// The chain ID of the current fork.
uint256 chainId;
}
/// The result of a `stopAndReturnStateDiff` call.
struct AccountAccess {
// The chain and fork the access occurred.
ChainInfo chainInfo;
// The kind of account access that determines what the account is.
// If kind is Call, DelegateCall, StaticCall or CallCode, then the account is the callee.
// If kind is Create, then the account is the newly created account.
// If kind is SelfDestruct, then the account is the selfdestruct recipient.
// If kind is a Resume, then account represents a account context that has resumed.
AccountAccessKind kind;
// The account that was accessed.
// It's either the account created, callee or a selfdestruct recipient for CREATE, CALL or SELFDESTRUCT.
address account;
// What accessed the account.
address accessor;
// If the account was initialized or empty prior to the access.
// An account is considered initialized if it has code, a
// non-zero nonce, or a non-zero balance.
bool initialized;
// The previous balance of the accessed account.
uint256 oldBalance;
// The potential new balance of the accessed account.
// That is, all balance changes are recorded here, even if reverts occurred.
uint256 newBalance;
// Code of the account deployed by CREATE.
bytes deployedCode;
// Value passed along with the account access
uint256 value;
// Input data provided to the CREATE or CALL
bytes data;
// If this access reverted in either the current or parent context.
bool reverted;
// An ordered list of storage accesses made during an account access operation.
StorageAccess[] storageAccesses;
// Call depth traversed during the recording of state differences
uint64 depth;
}
/// The storage accessed during an `AccountAccess`.
struct StorageAccess {
// The account whose storage was accessed.
address account;
// The slot that was accessed.
bytes32 slot;
// If the access was a write.
bool isWrite;
// The previous value of the slot.
bytes32 previousValue;
// The new value of the slot.
bytes32 newValue;
// If the access was reverted.
bool reverted;
}
/// Gas used. Returned by `lastCallGas`.
struct Gas {
// The gas limit of the call.
uint64 gasLimit;
// The total gas used.
uint64 gasTotalUsed;
// DEPRECATED: The amount of gas used for memory expansion. Ref: <https://github.com/foundry-rs/foundry/pull/7934#pullrequestreview-2069236939>
uint64 gasMemoryUsed;
// The amount of gas refunded.
int64 gasRefunded;
// The amount of gas remaining.
uint64 gasRemaining;
}
// ======== Crypto ========
/// Derives a private key from the name, labels the account with that name, and returns the wallet.
function createWallet(string calldata walletLabel) external returns (Wallet memory wallet);
/// Generates a wallet from the private key and returns the wallet.
function createWallet(uint256 privateKey) external returns (Wallet memory wallet);
/// Generates a wallet from the private key, labels the account with that name, and returns the wallet.
function createWallet(uint256 privateKey, string calldata walletLabel) external returns (Wallet memory wallet);
/// Derive a private key from a provided mnenomic string (or mnenomic file path)
/// at the derivation path `m/44'/60'/0'/0/{index}`.
function deriveKey(string calldata mnemonic, uint32 index) external pure returns (uint256 privateKey);
/// Derive a private key from a provided mnenomic string (or mnenomic file path)
/// at `{derivationPath}{index}`.
function deriveKey(string calldata mnemonic, string calldata derivationPath, uint32 index)
external
pure
returns (uint256 privateKey);
/// Derive a private key from a provided mnenomic string (or mnenomic file path) in the specified language
/// at the derivation path `m/44'/60'/0'/0/{index}`.
function deriveKey(string calldata mnemonic, uint32 index, string calldata language)
external
pure
returns (uint256 privateKey);
/// Derive a private key from a provided mnenomic string (or mnenomic file path) in the specified language
/// at `{derivationPath}{index}`.
function deriveKey(string calldata mnemonic, string calldata derivationPath, uint32 index, string calldata language)
external
pure
returns (uint256 privateKey);
/// Derives secp256r1 public key from the provided `privateKey`.
function publicKeyP256(uint256 privateKey) external pure returns (uint256 publicKeyX, uint256 publicKeyY);
/// Adds a private key to the local forge wallet and returns the address.
function rememberKey(uint256 privateKey) external returns (address keyAddr);
/// Signs data with a `Wallet`.
/// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
/// signature's `s` value, and the recovery id `v` in a single bytes32.
/// This format reduces the signature size from 65 to 64 bytes.
function signCompact(Wallet calldata wallet, bytes32 digest) external returns (bytes32 r, bytes32 vs);
/// Signs `digest` with `privateKey` using the secp256k1 curve.
/// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
/// signature's `s` value, and the recovery id `v` in a single bytes32.
/// This format reduces the signature size from 65 to 64 bytes.
function signCompact(uint256 privateKey, bytes32 digest) external pure returns (bytes32 r, bytes32 vs);
/// Signs `digest` with signer provided to script using the secp256k1 curve.
/// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
/// signature's `s` value, and the recovery id `v` in a single bytes32.
/// This format reduces the signature size from 65 to 64 bytes.
/// If `--sender` is provided, the signer with provided address is used, otherwise,
/// if exactly one signer is provided to the script, that signer is used.
/// Raises error if signer passed through `--sender` does not match any unlocked signers or
/// if `--sender` is not provided and not exactly one signer is passed to the script.
function signCompact(bytes32 digest) external pure returns (bytes32 r, bytes32 vs);
/// Signs `digest` with signer provided to script using the secp256k1 curve.
/// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
/// signature's `s` value, and the recovery id `v` in a single bytes32.
/// This format reduces the signature size from 65 to 64 bytes.
/// Raises error if none of the signers passed into the script have provided address.
function signCompact(address signer, bytes32 digest) external pure returns (bytes32 r, bytes32 vs);
/// Signs `digest` with `privateKey` using the secp256r1 curve.
function signP256(uint256 privateKey, bytes32 digest) external pure returns (bytes32 r, bytes32 s);
/// Signs data with a `Wallet`.
function sign(Wallet calldata wallet, bytes32 digest) external returns (uint8 v, bytes32 r, bytes32 s);
/// Signs `digest` with `privateKey` using the secp256k1 curve.
function sign(uint256 privateKey, bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);
/// Signs `digest` with signer provided to script using the secp256k1 curve.
/// If `--sender` is provided, the signer with provided address is used, otherwise,
/// if exactly one signer is provided to the script, that signer is used.
/// Raises error if signer passed through `--sender` does not match any unlocked signers or
/// if `--sender` is not provided and not exactly one signer is passed to the script.
function sign(bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);
/// Signs `digest` with signer provided to script using the secp256k1 curve.
/// Raises error if none of the signers passed into the script have provided address.
function sign(address signer, bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);
// ======== Environment ========
/// Gets the environment variable `name` and parses it as `address`.
/// Reverts if the variable was not found or could not be parsed.
function envAddress(string calldata name) external view returns (address value);
/// Gets the environment variable `name` and parses it as an array of `address`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envAddress(string calldata name, string calldata delim) external view returns (address[] memory value);
/// Gets the environment variable `name` and parses it as `bool`.
/// Reverts if the variable was not found or could not be parsed.
function envBool(string calldata name) external view returns (bool value);
/// Gets the environment variable `name` and parses it as an array of `bool`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envBool(string calldata name, string calldata delim) external view returns (bool[] memory value);
/// Gets the environment variable `name` and parses it as `bytes32`.
/// Reverts if the variable was not found or could not be parsed.
function envBytes32(string calldata name) external view returns (bytes32 value);
/// Gets the environment variable `name` and parses it as an array of `bytes32`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envBytes32(string calldata name, string calldata delim) external view returns (bytes32[] memory value);
/// Gets the environment variable `name` and parses it as `bytes`.
/// Reverts if the variable was not found or could not be parsed.
function envBytes(string calldata name) external view returns (bytes memory value);
/// Gets the environment variable `name` and parses it as an array of `bytes`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envBytes(string calldata name, string calldata delim) external view returns (bytes[] memory value);
/// Gets the environment variable `name` and returns true if it exists, else returns false.
function envExists(string calldata name) external view returns (bool result);
/// Gets the environment variable `name` and parses it as `int256`.
/// Reverts if the variable was not found or could not be parsed.
function envInt(string calldata name) external view returns (int256 value);
/// Gets the environment variable `name` and parses it as an array of `int256`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envInt(string calldata name, string calldata delim) external view returns (int256[] memory value);
/// Gets the environment variable `name` and parses it as `bool`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, bool defaultValue) external view returns (bool value);
/// Gets the environment variable `name` and parses it as `uint256`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, uint256 defaultValue) external view returns (uint256 value);
/// Gets the environment variable `name` and parses it as an array of `address`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, address[] calldata defaultValue)
external
view
returns (address[] memory value);
/// Gets the environment variable `name` and parses it as an array of `bytes32`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, bytes32[] calldata defaultValue)
external
view
returns (bytes32[] memory value);
/// Gets the environment variable `name` and parses it as an array of `string`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, string[] calldata defaultValue)
external
view
returns (string[] memory value);
/// Gets the environment variable `name` and parses it as an array of `bytes`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, bytes[] calldata defaultValue)
external
view
returns (bytes[] memory value);
/// Gets the environment variable `name` and parses it as `int256`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, int256 defaultValue) external view returns (int256 value);
/// Gets the environment variable `name` and parses it as `address`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, address defaultValue) external view returns (address value);
/// Gets the environment variable `name` and parses it as `bytes32`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, bytes32 defaultValue) external view returns (bytes32 value);
/// Gets the environment variable `name` and parses it as `string`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata defaultValue) external view returns (string memory value);
/// Gets the environment variable `name` and parses it as `bytes`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, bytes calldata defaultValue) external view returns (bytes memory value);
/// Gets the environment variable `name` and parses it as an array of `bool`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, bool[] calldata defaultValue)
external
view
returns (bool[] memory value);
/// Gets the environment variable `name` and parses it as an array of `uint256`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, uint256[] calldata defaultValue)
external
view
returns (uint256[] memory value);
/// Gets the environment variable `name` and parses it as an array of `int256`, delimited by `delim`.
/// Reverts if the variable could not be parsed.
/// Returns `defaultValue` if the variable was not found.
function envOr(string calldata name, string calldata delim, int256[] calldata defaultValue)
external
view
returns (int256[] memory value);
/// Gets the environment variable `name` and parses it as `string`.
/// Reverts if the variable was not found or could not be parsed.
function envString(string calldata name) external view returns (string memory value);
/// Gets the environment variable `name` and parses it as an array of `string`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envString(string calldata name, string calldata delim) external view returns (string[] memory value);
/// Gets the environment variable `name` and parses it as `uint256`.
/// Reverts if the variable was not found or could not be parsed.
function envUint(string calldata name) external view returns (uint256 value);
/// Gets the environment variable `name` and parses it as an array of `uint256`, delimited by `delim`.
/// Reverts if the variable was not found or could not be parsed.
function envUint(string calldata name, string calldata delim) external view returns (uint256[] memory value);
/// Returns true if `forge` command was executed in given context.
function isContext(ForgeContext context) external view returns (bool result);
/// Sets environment variables.
function setEnv(string calldata name, string calldata value) external;
// ======== EVM ========
/// Gets all accessed reads and write slot from a `vm.record` session, for a given address.
function accesses(address target) external returns (bytes32[] memory readSlots, bytes32[] memory writeSlots);
/// Gets the address for a given private key.
function addr(uint256 privateKey) external pure returns (address keyAddr);
/// Gets all the logs according to specified filter.
function eth_getLogs(uint256 fromBlock, uint256 toBlock, address target, bytes32[] calldata topics)
external
returns (EthGetLogs[] memory logs);
/// Gets the current `block.blobbasefee`.
/// You should use this instead of `block.blobbasefee` if you use `vm.blobBaseFee`, as `block.blobbasefee` is assumed to be constant across a transaction,
/// and as a result will get optimized out by the compiler.
/// See https://github.com/foundry-rs/foundry/issues/6180
function getBlobBaseFee() external view returns (uint256 blobBaseFee);
/// Gets the current `block.number`.
/// You should use this instead of `block.number` if you use `vm.roll`, as `block.number` is assumed to be constant across a transaction,
/// and as a result will get optimized out by the compiler.
/// See https://github.com/foundry-rs/foundry/issues/6180
function getBlockNumber() external view returns (uint256 height);
/// Gets the current `block.timestamp`.
/// You should use this instead of `block.timestamp` if you use `vm.warp`, as `block.timestamp` is assumed to be constant across a transaction,
/// and as a result will get optimized out by the compiler.
/// See https://github.com/foundry-rs/foundry/issues/6180
function getBlockTimestamp() external view returns (uint256 timestamp);
/// Gets the map key and parent of a mapping at a given slot, for a given address.
function getMappingKeyAndParentOf(address target, bytes32 elementSlot)
external
returns (bool found, bytes32 key, bytes32 parent);
/// Gets the number of elements in the mapping at the given slot, for a given address.
function getMappingLength(address target, bytes32 mappingSlot) external returns (uint256 length);
/// Gets the elements at index idx of the mapping at the given slot, for a given address. The
/// index must be less than the length of the mapping (i.e. the number of keys in the mapping).
function getMappingSlotAt(address target, bytes32 mappingSlot, uint256 idx) external returns (bytes32 value);
/// Gets the nonce of an account.
function getNonce(address account) external view returns (uint64 nonce);
/// Get the nonce of a `Wallet`.
function getNonce(Wallet calldata wallet) external returns (uint64 nonce);
/// Gets all the recorded logs.
function getRecordedLogs() external returns (Log[] memory logs);
/// Gets the gas used in the last call.
function lastCallGas() external view returns (Gas memory gas);
/// Loads a storage slot from an address.
function load(address target, bytes32 slot) external view returns (bytes32 data);
/// Pauses gas metering (i.e. gas usage is not counted). Noop if already paused.
function pauseGasMetering() external;
/// Records all storage reads and writes.
function record() external;
/// Record all the transaction logs.
function recordLogs() external;
/// Reset gas metering (i.e. gas usage is set to gas limit).
function resetGasMetering() external;
/// Resumes gas metering (i.e. gas usage is counted again). Noop if already on.
function resumeGasMetering() external;
/// Performs an Ethereum JSON-RPC request to the current fork URL.
function rpc(string calldata method, string calldata params) external returns (bytes memory data);
/// Performs an Ethereum JSON-RPC request to the given endpoint.
function rpc(string calldata urlOrAlias, string calldata method, string calldata params)
external
returns (bytes memory data);
/// Starts recording all map SSTOREs for later retrieval.
function startMappingRecording() external;
/// Record all account accesses as part of CREATE, CALL or SELFDESTRUCT opcodes in order,
/// along with the context of the calls
function startStateDiffRecording() external;
/// Returns an ordered array of all account accesses from a `vm.startStateDiffRecording` session.
function stopAndReturnStateDiff() external returns (AccountAccess[] memory accountAccesses);
/// Stops recording all map SSTOREs for later retrieval and clears the recorded data.
function stopMappingRecording() external;
// ======== Filesystem ========
/// Closes file for reading, resetting the offset and allowing to read it from beginning with readLine.
/// `path` is relative to the project root.
function closeFile(string calldata path) external;
/// Copies the contents of one file to another. This function will **overwrite** the contents of `to`.
/// On success, the total number of bytes copied is returned and it is equal to the length of the `to` file as reported by `metadata`.
/// Both `from` and `to` are relative to the project root.
function copyFile(string calldata from, string calldata to) external returns (uint64 copied);
/// Creates a new, empty directory at the provided path.
/// This cheatcode will revert in the following situations, but is not limited to just these cases:
/// - User lacks permissions to modify `path`.
/// - A parent of the given path doesn't exist and `recursive` is false.
/// - `path` already exists and `recursive` is false.
/// `path` is relative to the project root.
function createDir(string calldata path, bool recursive) external;
/// Deploys a contract from an artifact file. Takes in the relative path to the json file or the path to the
/// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
function deployCode(string calldata artifactPath) external returns (address deployedAddress);
/// Deploys a contract from an artifact file. Takes in the relative path to the json file or the path to the
/// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
/// Additionally accepts abi-encoded constructor arguments.
function deployCode(string calldata artifactPath, bytes calldata constructorArgs)
external
returns (address deployedAddress);
/// Returns true if the given path points to an existing entity, else returns false.
function exists(string calldata path) external returns (bool result);
/// Performs a foreign function call via the terminal.
function ffi(string[] calldata commandInput) external returns (bytes memory result);
/// Given a path, query the file system to get information about a file, directory, etc.
function fsMetadata(string calldata path) external view returns (FsMetadata memory metadata);
/// Gets the artifact path from code (aka. creation code).
function getArtifactPathByCode(bytes calldata code) external view returns (string memory path);
/// Gets the artifact path from deployed code (aka. runtime code).
function getArtifactPathByDeployedCode(bytes calldata deployedCode) external view returns (string memory path);
/// Gets the creation bytecode from an artifact file. Takes in the relative path to the json file or the path to the
/// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
function getCode(string calldata artifactPath) external view returns (bytes memory creationBytecode);
/// Gets the deployed bytecode from an artifact file. Takes in the relative path to the json file or the path to the
/// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
function getDeployedCode(string calldata artifactPath) external view returns (bytes memory runtimeBytecode);
/// Returns true if the path exists on disk and is pointing at a directory, else returns false.
function isDir(string calldata path) external returns (bool result);
/// Returns true if the path exists on disk and is pointing at a regular file, else returns false.
function isFile(string calldata path) external returns (bool result);
/// Get the path of the current project root.
function projectRoot() external view returns (string memory path);
/// Prompts the user for a string value in the terminal.
function prompt(string calldata promptText) external returns (string memory input);
/// Prompts the user for an address in the terminal.
function promptAddress(string calldata promptText) external returns (address);
/// Prompts the user for a hidden string value in the terminal.
function promptSecret(string calldata promptText) external returns (string memory input);
/// Prompts the user for hidden uint256 in the terminal (usually pk).
function promptSecretUint(string calldata promptText) external returns (uint256);
/// Prompts the user for uint256 in the terminal.
function promptUint(string calldata promptText) external returns (uint256);
/// Reads the directory at the given path recursively, up to `maxDepth`.
/// `maxDepth` defaults to 1, meaning only the direct children of the given directory will be returned.
/// Follows symbolic links if `followLinks` is true.
function readDir(string calldata path) external view returns (DirEntry[] memory entries);
/// See `readDir(string)`.
function readDir(string calldata path, uint64 maxDepth) external view returns (DirEntry[] memory entries);
/// See `readDir(string)`.
function readDir(string calldata path, uint64 maxDepth, bool followLinks)
external
view
returns (DirEntry[] memory entries);
/// Reads the entire content of file to string. `path` is relative to the project root.
function readFile(string calldata path) external view returns (string memory data);
/// Reads the entire content of file as binary. `path` is relative to the project root.
function readFileBinary(string calldata path) external view returns (bytes memory data);
/// Reads next line of file to string.
function readLine(string calldata path) external view returns (string memory line);
/// Reads a symbolic link, returning the path that the link points to.
/// This cheatcode will revert in the following situations, but is not limited to just these cases:
/// - `path` is not a symbolic link.
/// - `path` does not exist.
function readLink(string calldata linkPath) external view returns (string memory targetPath);
/// Removes a directory at the provided path.
/// This cheatcode will revert in the following situations, but is not limited to just these cases:
/// - `path` doesn't exist.
/// - `path` isn't a directory.
/// - User lacks permissions to modify `path`.
/// - The directory is not empty and `recursive` is false.
/// `path` is relative to the project root.
function removeDir(string calldata path, bool recursive) external;
/// Removes a file from the filesystem.
/// This cheatcode will revert in the following situations, but is not limited to just these cases:
/// - `path` points to a directory.
/// - The file doesn't exist.
/// - The user lacks permissions to remove the file.
/// `path` is relative to the project root.
function removeFile(string calldata path) external;
/// Performs a foreign function call via terminal and returns the exit code, stdout, and stderr.
function tryFfi(string[] calldata commandInput) external returns (FfiResult memory result);
/// Returns the time since unix epoch in milliseconds.
function unixTime() external returns (uint256 milliseconds);
/// Writes data to file, creating a file if it does not exist, and entirely replacing its contents if it does.
/// `path` is relative to the project root.
function writeFile(string calldata path, string calldata data) external;
/// Writes binary data to a file, creating a file if it does not exist, and entirely replacing its contents if it does.
/// `path` is relative to the project root.
function writeFileBinary(string calldata path, bytes calldata data) external;
/// Writes line to file, creating a file if it does not exist.
/// `path` is relative to the project root.
function writeLine(string calldata path, string calldata data) external;
// ======== JSON ========
/// Checks if `key` exists in a JSON object.
function keyExistsJson(string calldata json, string calldata key) external view returns (bool);
/// Parses a string of JSON data at `key` and coerces it to `address`.
function parseJsonAddress(string calldata json, string calldata key) external pure returns (address);
/// Parses a string of JSON data at `key` and coerces it to `address[]`.
function parseJsonAddressArray(string calldata json, string calldata key)
external
pure
returns (address[] memory);
/// Parses a string of JSON data at `key` and coerces it to `bool`.
function parseJsonBool(string calldata json, string calldata key) external pure returns (bool);
/// Parses a string of JSON data at `key` and coerces it to `bool[]`.
function parseJsonBoolArray(string calldata json, string calldata key) external pure returns (bool[] memory);
/// Parses a string of JSON data at `key` and coerces it to `bytes`.
function parseJsonBytes(string calldata json, string calldata key) external pure returns (bytes memory);
/// Parses a string of JSON data at `key` and coerces it to `bytes32`.
function parseJsonBytes32(string calldata json, string calldata key) external pure returns (bytes32);
/// Parses a string of JSON data at `key` and coerces it to `bytes32[]`.
function parseJsonBytes32Array(string calldata json, string calldata key)
external
pure
returns (bytes32[] memory);
/// Parses a string of JSON data at `key` and coerces it to `bytes[]`.
function parseJsonBytesArray(string calldata json, string calldata key) external pure returns (bytes[] memory);
/// Parses a string of JSON data at `key` and coerces it to `int256`.
function parseJsonInt(string calldata json, string calldata key) external pure returns (int256);
/// Parses a string of JSON data at `key` and coerces it to `int256[]`.
function parseJsonIntArray(string calldata json, string calldata key) external pure returns (int256[] memory);
/// Returns an array of all the keys in a JSON object.
function parseJsonKeys(string calldata json, string calldata key) external pure returns (string[] memory keys);
/// Parses a string of JSON data at `key` and coerces it to `string`.
function parseJsonString(string calldata json, string calldata key) external pure returns (string memory);
/// Parses a string of JSON data at `key` and coerces it to `string[]`.
function parseJsonStringArray(string calldata json, string calldata key) external pure returns (string[] memory);
/// Parses a string of JSON data at `key` and coerces it to type array corresponding to `typeDescription`.
function parseJsonTypeArray(string calldata json, string calldata key, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of JSON data and coerces it to type corresponding to `typeDescription`.
function parseJsonType(string calldata json, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of JSON data at `key` and coerces it to type corresponding to `typeDescription`.
function parseJsonType(string calldata json, string calldata key, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of JSON data at `key` and coerces it to `uint256`.
function parseJsonUint(string calldata json, string calldata key) external pure returns (uint256);
/// Parses a string of JSON data at `key` and coerces it to `uint256[]`.
function parseJsonUintArray(string calldata json, string calldata key) external pure returns (uint256[] memory);
/// ABI-encodes a JSON object.
function parseJson(string calldata json) external pure returns (bytes memory abiEncodedData);
/// ABI-encodes a JSON object at `key`.
function parseJson(string calldata json, string calldata key) external pure returns (bytes memory abiEncodedData);
/// See `serializeJson`.
function serializeAddress(string calldata objectKey, string calldata valueKey, address value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeAddress(string calldata objectKey, string calldata valueKey, address[] calldata values)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBool(string calldata objectKey, string calldata valueKey, bool value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBool(string calldata objectKey, string calldata valueKey, bool[] calldata values)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32 value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32[] calldata values)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBytes(string calldata objectKey, string calldata valueKey, bytes calldata value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeBytes(string calldata objectKey, string calldata valueKey, bytes[] calldata values)
external
returns (string memory json);
/// See `serializeJson`.
function serializeInt(string calldata objectKey, string calldata valueKey, int256 value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeInt(string calldata objectKey, string calldata valueKey, int256[] calldata values)
external
returns (string memory json);
/// Serializes a key and value to a JSON object stored in-memory that can be later written to a file.
/// Returns the stringified version of the specific JSON file up to that moment.
function serializeJson(string calldata objectKey, string calldata value) external returns (string memory json);
/// See `serializeJson`.
function serializeJsonType(string calldata typeDescription, bytes calldata value)
external
pure
returns (string memory json);
/// See `serializeJson`.
function serializeJsonType(
string calldata objectKey,
string calldata valueKey,
string calldata typeDescription,
bytes calldata value
) external returns (string memory json);
/// See `serializeJson`.
function serializeString(string calldata objectKey, string calldata valueKey, string calldata value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeString(string calldata objectKey, string calldata valueKey, string[] calldata values)
external
returns (string memory json);
/// See `serializeJson`.
function serializeUintToHex(string calldata objectKey, string calldata valueKey, uint256 value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeUint(string calldata objectKey, string calldata valueKey, uint256 value)
external
returns (string memory json);
/// See `serializeJson`.
function serializeUint(string calldata objectKey, string calldata valueKey, uint256[] calldata values)
external
returns (string memory json);
/// Write a serialized JSON object to a file. If the file exists, it will be overwritten.
function writeJson(string calldata json, string calldata path) external;
/// Write a serialized JSON object to an **existing** JSON file, replacing a value with key = <value_key.>
/// This is useful to replace a specific value of a JSON file, without having to parse the entire thing.
function writeJson(string calldata json, string calldata path, string calldata valueKey) external;
/// Checks if `key` exists in a JSON object
/// `keyExists` is being deprecated in favor of `keyExistsJson`. It will be removed in future versions.
function keyExists(string calldata json, string calldata key) external view returns (bool);
// ======== Scripting ========
/// Takes a signed transaction and broadcasts it to the network.
function broadcastRawTransaction(bytes calldata data) external;
/// Has the next call (at this call depth only) create transactions that can later be signed and sent onchain.
/// Broadcasting address is determined by checking the following in order:
/// 1. If `--sender` argument was provided, that address is used.
/// 2. If exactly one signer (e.g. private key, hw wallet, keystore) is set when `forge broadcast` is invoked, that signer is used.
/// 3. Otherwise, default foundry sender (1804c8AB1F12E6bbf3894d4083f33e07309d1f38) is used.
function broadcast() external;
/// Has the next call (at this call depth only) create a transaction with the address provided
/// as the sender that can later be signed and sent onchain.
function broadcast(address signer) external;
/// Has the next call (at this call depth only) create a transaction with the private key
/// provided as the sender that can later be signed and sent onchain.
function broadcast(uint256 privateKey) external;
/// Has all subsequent calls (at this call depth only) create transactions that can later be signed and sent onchain.
/// Broadcasting address is determined by checking the following in order:
/// 1. If `--sender` argument was provided, that address is used.
/// 2. If exactly one signer (e.g. private key, hw wallet, keystore) is set when `forge broadcast` is invoked, that signer is used.
/// 3. Otherwise, default foundry sender (1804c8AB1F12E6bbf3894d4083f33e07309d1f38) is used.
function startBroadcast() external;
/// Has all subsequent calls (at this call depth only) create transactions with the address
/// provided that can later be signed and sent onchain.
function startBroadcast(address signer) external;
/// Has all subsequent calls (at this call depth only) create transactions with the private key
/// provided that can later be signed and sent onchain.
function startBroadcast(uint256 privateKey) external;
/// Stops collecting onchain transactions.
function stopBroadcast() external;
// ======== String ========
/// Returns the index of the first occurrence of a `key` in an `input` string.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `key` is not found.
/// Returns 0 in case of an empty `key`.
function indexOf(string calldata input, string calldata key) external pure returns (uint256);
/// Parses the given `string` into an `address`.
function parseAddress(string calldata stringifiedValue) external pure returns (address parsedValue);
/// Parses the given `string` into a `bool`.
function parseBool(string calldata stringifiedValue) external pure returns (bool parsedValue);
/// Parses the given `string` into `bytes`.
function parseBytes(string calldata stringifiedValue) external pure returns (bytes memory parsedValue);
/// Parses the given `string` into a `bytes32`.
function parseBytes32(string calldata stringifiedValue) external pure returns (bytes32 parsedValue);
/// Parses the given `string` into a `int256`.
function parseInt(string calldata stringifiedValue) external pure returns (int256 parsedValue);
/// Parses the given `string` into a `uint256`.
function parseUint(string calldata stringifiedValue) external pure returns (uint256 parsedValue);
/// Replaces occurrences of `from` in the given `string` with `to`.
function replace(string calldata input, string calldata from, string calldata to)
external
pure
returns (string memory output);
/// Splits the given `string` into an array of strings divided by the `delimiter`.
function split(string calldata input, string calldata delimiter) external pure returns (string[] memory outputs);
/// Converts the given `string` value to Lowercase.
function toLowercase(string calldata input) external pure returns (string memory output);
/// Converts the given value to a `string`.
function toString(address value) external pure returns (string memory stringifiedValue);
/// Converts the given value to a `string`.
function toString(bytes calldata value) external pure returns (string memory stringifiedValue);
/// Converts the given value to a `string`.
function toString(bytes32 value) external pure returns (string memory stringifiedValue);
/// Converts the given value to a `string`.
function toString(bool value) external pure returns (string memory stringifiedValue);
/// Converts the given value to a `string`.
function toString(uint256 value) external pure returns (string memory stringifiedValue);
/// Converts the given value to a `string`.
function toString(int256 value) external pure returns (string memory stringifiedValue);
/// Converts the given `string` value to Uppercase.
function toUppercase(string calldata input) external pure returns (string memory output);
/// Trims leading and trailing whitespace from the given `string` value.
function trim(string calldata input) external pure returns (string memory output);
// ======== Testing ========
/// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
/// Formats values with decimals in failure message.
function assertApproxEqAbsDecimal(uint256 left, uint256 right, uint256 maxDelta, uint256 decimals) external pure;
/// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertApproxEqAbsDecimal(
uint256 left,
uint256 right,
uint256 maxDelta,
uint256 decimals,
string calldata error
) external pure;
/// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
/// Formats values with decimals in failure message.
function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals) external pure;
/// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertApproxEqAbsDecimal(
int256 left,
int256 right,
uint256 maxDelta,
uint256 decimals,
string calldata error
) external pure;
/// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta) external pure;
/// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
/// Includes error message into revert string on failure.
function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta, string calldata error) external pure;
/// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta) external pure;
/// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
/// Includes error message into revert string on failure.
function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta, string calldata error) external pure;
/// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Formats values with decimals in failure message.
function assertApproxEqRelDecimal(uint256 left, uint256 right, uint256 maxPercentDelta, uint256 decimals)
external
pure;
/// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertApproxEqRelDecimal(
uint256 left,
uint256 right,
uint256 maxPercentDelta,
uint256 decimals,
string calldata error
) external pure;
/// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Formats values with decimals in failure message.
function assertApproxEqRelDecimal(int256 left, int256 right, uint256 maxPercentDelta, uint256 decimals)
external
pure;
/// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertApproxEqRelDecimal(
int256 left,
int256 right,
uint256 maxPercentDelta,
uint256 decimals,
string calldata error
) external pure;
/// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
function assertApproxEqRel(uint256 left, uint256 right, uint256 maxPercentDelta) external pure;
/// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Includes error message into revert string on failure.
function assertApproxEqRel(uint256 left, uint256 right, uint256 maxPercentDelta, string calldata error)
external
pure;
/// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta) external pure;
/// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
/// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
/// Includes error message into revert string on failure.
function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta, string calldata error)
external
pure;
/// Asserts that two `uint256` values are equal, formatting them with decimals in failure message.
function assertEqDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Asserts that two `uint256` values are equal, formatting them with decimals in failure message.
/// Includes error message into revert string on failure.
function assertEqDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Asserts that two `int256` values are equal, formatting them with decimals in failure message.
function assertEqDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Asserts that two `int256` values are equal, formatting them with decimals in failure message.
/// Includes error message into revert string on failure.
function assertEqDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Asserts that two `bool` values are equal.
function assertEq(bool left, bool right) external pure;
/// Asserts that two `bool` values are equal and includes error message into revert string on failure.
function assertEq(bool left, bool right, string calldata error) external pure;
/// Asserts that two `string` values are equal.
function assertEq(string calldata left, string calldata right) external pure;
/// Asserts that two `string` values are equal and includes error message into revert string on failure.
function assertEq(string calldata left, string calldata right, string calldata error) external pure;
/// Asserts that two `bytes` values are equal.
function assertEq(bytes calldata left, bytes calldata right) external pure;
/// Asserts that two `bytes` values are equal and includes error message into revert string on failure.
function assertEq(bytes calldata left, bytes calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bool` values are equal.
function assertEq(bool[] calldata left, bool[] calldata right) external pure;
/// Asserts that two arrays of `bool` values are equal and includes error message into revert string on failure.
function assertEq(bool[] calldata left, bool[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `uint256 values are equal.
function assertEq(uint256[] calldata left, uint256[] calldata right) external pure;
/// Asserts that two arrays of `uint256` values are equal and includes error message into revert string on failure.
function assertEq(uint256[] calldata left, uint256[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `int256` values are equal.
function assertEq(int256[] calldata left, int256[] calldata right) external pure;
/// Asserts that two arrays of `int256` values are equal and includes error message into revert string on failure.
function assertEq(int256[] calldata left, int256[] calldata right, string calldata error) external pure;
/// Asserts that two `uint256` values are equal.
function assertEq(uint256 left, uint256 right) external pure;
/// Asserts that two arrays of `address` values are equal.
function assertEq(address[] calldata left, address[] calldata right) external pure;
/// Asserts that two arrays of `address` values are equal and includes error message into revert string on failure.
function assertEq(address[] calldata left, address[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bytes32` values are equal.
function assertEq(bytes32[] calldata left, bytes32[] calldata right) external pure;
/// Asserts that two arrays of `bytes32` values are equal and includes error message into revert string on failure.
function assertEq(bytes32[] calldata left, bytes32[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `string` values are equal.
function assertEq(string[] calldata left, string[] calldata right) external pure;
/// Asserts that two arrays of `string` values are equal and includes error message into revert string on failure.
function assertEq(string[] calldata left, string[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bytes` values are equal.
function assertEq(bytes[] calldata left, bytes[] calldata right) external pure;
/// Asserts that two arrays of `bytes` values are equal and includes error message into revert string on failure.
function assertEq(bytes[] calldata left, bytes[] calldata right, string calldata error) external pure;
/// Asserts that two `uint256` values are equal and includes error message into revert string on failure.
function assertEq(uint256 left, uint256 right, string calldata error) external pure;
/// Asserts that two `int256` values are equal.
function assertEq(int256 left, int256 right) external pure;
/// Asserts that two `int256` values are equal and includes error message into revert string on failure.
function assertEq(int256 left, int256 right, string calldata error) external pure;
/// Asserts that two `address` values are equal.
function assertEq(address left, address right) external pure;
/// Asserts that two `address` values are equal and includes error message into revert string on failure.
function assertEq(address left, address right, string calldata error) external pure;
/// Asserts that two `bytes32` values are equal.
function assertEq(bytes32 left, bytes32 right) external pure;
/// Asserts that two `bytes32` values are equal and includes error message into revert string on failure.
function assertEq(bytes32 left, bytes32 right, string calldata error) external pure;
/// Asserts that the given condition is false.
function assertFalse(bool condition) external pure;
/// Asserts that the given condition is false and includes error message into revert string on failure.
function assertFalse(bool condition, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be greater than or equal to second.
/// Formats values with decimals in failure message.
function assertGeDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Compares two `uint256` values. Expects first value to be greater than or equal to second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertGeDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be greater than or equal to second.
/// Formats values with decimals in failure message.
function assertGeDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Compares two `int256` values. Expects first value to be greater than or equal to second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertGeDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be greater than or equal to second.
function assertGe(uint256 left, uint256 right) external pure;
/// Compares two `uint256` values. Expects first value to be greater than or equal to second.
/// Includes error message into revert string on failure.
function assertGe(uint256 left, uint256 right, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be greater than or equal to second.
function assertGe(int256 left, int256 right) external pure;
/// Compares two `int256` values. Expects first value to be greater than or equal to second.
/// Includes error message into revert string on failure.
function assertGe(int256 left, int256 right, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be greater than second.
/// Formats values with decimals in failure message.
function assertGtDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Compares two `uint256` values. Expects first value to be greater than second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertGtDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be greater than second.
/// Formats values with decimals in failure message.
function assertGtDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Compares two `int256` values. Expects first value to be greater than second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertGtDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be greater than second.
function assertGt(uint256 left, uint256 right) external pure;
/// Compares two `uint256` values. Expects first value to be greater than second.
/// Includes error message into revert string on failure.
function assertGt(uint256 left, uint256 right, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be greater than second.
function assertGt(int256 left, int256 right) external pure;
/// Compares two `int256` values. Expects first value to be greater than second.
/// Includes error message into revert string on failure.
function assertGt(int256 left, int256 right, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be less than or equal to second.
/// Formats values with decimals in failure message.
function assertLeDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Compares two `uint256` values. Expects first value to be less than or equal to second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertLeDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be less than or equal to second.
/// Formats values with decimals in failure message.
function assertLeDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Compares two `int256` values. Expects first value to be less than or equal to second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertLeDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be less than or equal to second.
function assertLe(uint256 left, uint256 right) external pure;
/// Compares two `uint256` values. Expects first value to be less than or equal to second.
/// Includes error message into revert string on failure.
function assertLe(uint256 left, uint256 right, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be less than or equal to second.
function assertLe(int256 left, int256 right) external pure;
/// Compares two `int256` values. Expects first value to be less than or equal to second.
/// Includes error message into revert string on failure.
function assertLe(int256 left, int256 right, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be less than second.
/// Formats values with decimals in failure message.
function assertLtDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Compares two `uint256` values. Expects first value to be less than second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertLtDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be less than second.
/// Formats values with decimals in failure message.
function assertLtDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Compares two `int256` values. Expects first value to be less than second.
/// Formats values with decimals in failure message. Includes error message into revert string on failure.
function assertLtDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Compares two `uint256` values. Expects first value to be less than second.
function assertLt(uint256 left, uint256 right) external pure;
/// Compares two `uint256` values. Expects first value to be less than second.
/// Includes error message into revert string on failure.
function assertLt(uint256 left, uint256 right, string calldata error) external pure;
/// Compares two `int256` values. Expects first value to be less than second.
function assertLt(int256 left, int256 right) external pure;
/// Compares two `int256` values. Expects first value to be less than second.
/// Includes error message into revert string on failure.
function assertLt(int256 left, int256 right, string calldata error) external pure;
/// Asserts that two `uint256` values are not equal, formatting them with decimals in failure message.
function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals) external pure;
/// Asserts that two `uint256` values are not equal, formatting them with decimals in failure message.
/// Includes error message into revert string on failure.
function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;
/// Asserts that two `int256` values are not equal, formatting them with decimals in failure message.
function assertNotEqDecimal(int256 left, int256 right, uint256 decimals) external pure;
/// Asserts that two `int256` values are not equal, formatting them with decimals in failure message.
/// Includes error message into revert string on failure.
function assertNotEqDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;
/// Asserts that two `bool` values are not equal.
function assertNotEq(bool left, bool right) external pure;
/// Asserts that two `bool` values are not equal and includes error message into revert string on failure.
function assertNotEq(bool left, bool right, string calldata error) external pure;
/// Asserts that two `string` values are not equal.
function assertNotEq(string calldata left, string calldata right) external pure;
/// Asserts that two `string` values are not equal and includes error message into revert string on failure.
function assertNotEq(string calldata left, string calldata right, string calldata error) external pure;
/// Asserts that two `bytes` values are not equal.
function assertNotEq(bytes calldata left, bytes calldata right) external pure;
/// Asserts that two `bytes` values are not equal and includes error message into revert string on failure.
function assertNotEq(bytes calldata left, bytes calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bool` values are not equal.
function assertNotEq(bool[] calldata left, bool[] calldata right) external pure;
/// Asserts that two arrays of `bool` values are not equal and includes error message into revert string on failure.
function assertNotEq(bool[] calldata left, bool[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `uint256` values are not equal.
function assertNotEq(uint256[] calldata left, uint256[] calldata right) external pure;
/// Asserts that two arrays of `uint256` values are not equal and includes error message into revert string on failure.
function assertNotEq(uint256[] calldata left, uint256[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `int256` values are not equal.
function assertNotEq(int256[] calldata left, int256[] calldata right) external pure;
/// Asserts that two arrays of `int256` values are not equal and includes error message into revert string on failure.
function assertNotEq(int256[] calldata left, int256[] calldata right, string calldata error) external pure;
/// Asserts that two `uint256` values are not equal.
function assertNotEq(uint256 left, uint256 right) external pure;
/// Asserts that two arrays of `address` values are not equal.
function assertNotEq(address[] calldata left, address[] calldata right) external pure;
/// Asserts that two arrays of `address` values are not equal and includes error message into revert string on failure.
function assertNotEq(address[] calldata left, address[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bytes32` values are not equal.
function assertNotEq(bytes32[] calldata left, bytes32[] calldata right) external pure;
/// Asserts that two arrays of `bytes32` values are not equal and includes error message into revert string on failure.
function assertNotEq(bytes32[] calldata left, bytes32[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `string` values are not equal.
function assertNotEq(string[] calldata left, string[] calldata right) external pure;
/// Asserts that two arrays of `string` values are not equal and includes error message into revert string on failure.
function assertNotEq(string[] calldata left, string[] calldata right, string calldata error) external pure;
/// Asserts that two arrays of `bytes` values are not equal.
function assertNotEq(bytes[] calldata left, bytes[] calldata right) external pure;
/// Asserts that two arrays of `bytes` values are not equal and includes error message into revert string on failure.
function assertNotEq(bytes[] calldata left, bytes[] calldata right, string calldata error) external pure;
/// Asserts that two `uint256` values are not equal and includes error message into revert string on failure.
function assertNotEq(uint256 left, uint256 right, string calldata error) external pure;
/// Asserts that two `int256` values are not equal.
function assertNotEq(int256 left, int256 right) external pure;
/// Asserts that two `int256` values are not equal and includes error message into revert string on failure.
function assertNotEq(int256 left, int256 right, string calldata error) external pure;
/// Asserts that two `address` values are not equal.
function assertNotEq(address left, address right) external pure;
/// Asserts that two `address` values are not equal and includes error message into revert string on failure.
function assertNotEq(address left, address right, string calldata error) external pure;
/// Asserts that two `bytes32` values are not equal.
function assertNotEq(bytes32 left, bytes32 right) external pure;
/// Asserts that two `bytes32` values are not equal and includes error message into revert string on failure.
function assertNotEq(bytes32 left, bytes32 right, string calldata error) external pure;
/// Asserts that the given condition is true.
function assertTrue(bool condition) external pure;
/// Asserts that the given condition is true and includes error message into revert string on failure.
function assertTrue(bool condition, string calldata error) external pure;
/// If the condition is false, discard this run's fuzz inputs and generate new ones.
function assume(bool condition) external pure;
/// Discard this run's fuzz inputs and generate new ones if next call reverted.
function assumeNoRevert() external pure;
/// Writes a breakpoint to jump to in the debugger.
function breakpoint(string calldata char) external;
/// Writes a conditional breakpoint to jump to in the debugger.
function breakpoint(string calldata char, bool value) external;
/// Returns the Foundry version.
/// Format: <cargo_version>+<git_sha>+<build_timestamp>
/// Sample output: 0.2.0+faa94c384+202407110019
/// Note: Build timestamps may vary slightly across platforms due to separate CI jobs.
/// For reliable version comparisons, use YYYYMMDD0000 format (e.g., >= 202407110000)
/// to compare timestamps while ignoring minor time differences.
function getFoundryVersion() external view returns (string memory version);
/// Returns the RPC url for the given alias.
function rpcUrl(string calldata rpcAlias) external view returns (string memory json);
/// Returns all rpc urls and their aliases as structs.
function rpcUrlStructs() external view returns (Rpc[] memory urls);
/// Returns all rpc urls and their aliases `[alias, url][]`.
function rpcUrls() external view returns (string[2][] memory urls);
/// Suspends execution of the main thread for `duration` milliseconds.
function sleep(uint256 duration) external;
// ======== Toml ========
/// Checks if `key` exists in a TOML table.
function keyExistsToml(string calldata toml, string calldata key) external view returns (bool);
/// Parses a string of TOML data at `key` and coerces it to `address`.
function parseTomlAddress(string calldata toml, string calldata key) external pure returns (address);
/// Parses a string of TOML data at `key` and coerces it to `address[]`.
function parseTomlAddressArray(string calldata toml, string calldata key)
external
pure
returns (address[] memory);
/// Parses a string of TOML data at `key` and coerces it to `bool`.
function parseTomlBool(string calldata toml, string calldata key) external pure returns (bool);
/// Parses a string of TOML data at `key` and coerces it to `bool[]`.
function parseTomlBoolArray(string calldata toml, string calldata key) external pure returns (bool[] memory);
/// Parses a string of TOML data at `key` and coerces it to `bytes`.
function parseTomlBytes(string calldata toml, string calldata key) external pure returns (bytes memory);
/// Parses a string of TOML data at `key` and coerces it to `bytes32`.
function parseTomlBytes32(string calldata toml, string calldata key) external pure returns (bytes32);
/// Parses a string of TOML data at `key` and coerces it to `bytes32[]`.
function parseTomlBytes32Array(string calldata toml, string calldata key)
external
pure
returns (bytes32[] memory);
/// Parses a string of TOML data at `key` and coerces it to `bytes[]`.
function parseTomlBytesArray(string calldata toml, string calldata key) external pure returns (bytes[] memory);
/// Parses a string of TOML data at `key` and coerces it to `int256`.
function parseTomlInt(string calldata toml, string calldata key) external pure returns (int256);
/// Parses a string of TOML data at `key` and coerces it to `int256[]`.
function parseTomlIntArray(string calldata toml, string calldata key) external pure returns (int256[] memory);
/// Returns an array of all the keys in a TOML table.
function parseTomlKeys(string calldata toml, string calldata key) external pure returns (string[] memory keys);
/// Parses a string of TOML data at `key` and coerces it to `string`.
function parseTomlString(string calldata toml, string calldata key) external pure returns (string memory);
/// Parses a string of TOML data at `key` and coerces it to `string[]`.
function parseTomlStringArray(string calldata toml, string calldata key) external pure returns (string[] memory);
/// Parses a string of TOML data at `key` and coerces it to type array corresponding to `typeDescription`.
function parseTomlTypeArray(string calldata toml, string calldata key, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of TOML data and coerces it to type corresponding to `typeDescription`.
function parseTomlType(string calldata toml, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of TOML data at `key` and coerces it to type corresponding to `typeDescription`.
function parseTomlType(string calldata toml, string calldata key, string calldata typeDescription)
external
pure
returns (bytes memory);
/// Parses a string of TOML data at `key` and coerces it to `uint256`.
function parseTomlUint(string calldata toml, string calldata key) external pure returns (uint256);
/// Parses a string of TOML data at `key` and coerces it to `uint256[]`.
function parseTomlUintArray(string calldata toml, string calldata key) external pure returns (uint256[] memory);
/// ABI-encodes a TOML table.
function parseToml(string calldata toml) external pure returns (bytes memory abiEncodedData);
/// ABI-encodes a TOML table at `key`.
function parseToml(string calldata toml, string calldata key) external pure returns (bytes memory abiEncodedData);
/// Takes serialized JSON, converts to TOML and write a serialized TOML to a file.
function writeToml(string calldata json, string calldata path) external;
/// Takes serialized JSON, converts to TOML and write a serialized TOML table to an **existing** TOML file, replacing a value with key = <value_key.>
/// This is useful to replace a specific value of a TOML file, without having to parse the entire thing.
function writeToml(string calldata json, string calldata path, string calldata valueKey) external;
// ======== Utilities ========
/// Compute the address of a contract created with CREATE2 using the given CREATE2 deployer.
function computeCreate2Address(bytes32 salt, bytes32 initCodeHash, address deployer)
external
pure
returns (address);
/// Compute the address of a contract created with CREATE2 using the default CREATE2 deployer.
function computeCreate2Address(bytes32 salt, bytes32 initCodeHash) external pure returns (address);
/// Compute the address a contract will be deployed at for a given deployer address and nonce.
function computeCreateAddress(address deployer, uint256 nonce) external pure returns (address);
/// Utility cheatcode to copy storage of `from` contract to another `to` contract.
function copyStorage(address from, address to) external;
/// Returns ENS namehash for provided string.
function ensNamehash(string calldata name) external pure returns (bytes32);
/// Gets the label for the specified address.
function getLabel(address account) external view returns (string memory currentLabel);
/// Labels an address in call traces.
function label(address account, string calldata newLabel) external;
/// Pauses collection of call traces. Useful in cases when you want to skip tracing of
/// complex calls which are not useful for debugging.
function pauseTracing() external view;
/// Returns a random `address`.
function randomAddress() external returns (address);
/// Returns an random `bool`.
function randomBool() external view returns (bool);
/// Returns an random byte array value of the given length.
function randomBytes(uint256 len) external view returns (bytes memory);
/// Returns an random `int256` value.
function randomInt() external view returns (int256);
/// Returns an random `int256` value of given bits.
function randomInt(uint256 bits) external view returns (int256);
/// Returns a random uint256 value.
function randomUint() external returns (uint256);
/// Returns random uint256 value between the provided range (=min..=max).
function randomUint(uint256 min, uint256 max) external returns (uint256);
/// Returns an random `uint256` value of given bits.
function randomUint(uint256 bits) external view returns (uint256);
/// Unpauses collection of call traces.
function resumeTracing() external view;
/// Utility cheatcode to set arbitrary storage for given target address.
function setArbitraryStorage(address target) external;
/// Encodes a `bytes` value to a base64url string.
function toBase64URL(bytes calldata data) external pure returns (string memory);
/// Encodes a `string` value to a base64url string.
function toBase64URL(string calldata data) external pure returns (string memory);
/// Encodes a `bytes` value to a base64 string.
function toBase64(bytes calldata data) external pure returns (string memory);
/// Encodes a `string` value to a base64 string.
function toBase64(string calldata data) external pure returns (string memory);
}
/// The `Vm` interface does allow manipulation of the EVM state. These are all intended to be used
/// in tests, but it is not recommended to use these cheats in scripts.
interface Vm is VmSafe {
// ======== EVM ========
/// Returns the identifier of the currently active fork. Reverts if no fork is currently active.
function activeFork() external view returns (uint256 forkId);
/// In forking mode, explicitly grant the given address cheatcode access.
function allowCheatcodes(address account) external;
/// Sets `block.blobbasefee`
function blobBaseFee(uint256 newBlobBaseFee) external;
/// Sets the blobhashes in the transaction.
/// Not available on EVM versions before Cancun.
/// If used on unsupported EVM versions it will revert.
function blobhashes(bytes32[] calldata hashes) external;
/// Sets `block.chainid`.
function chainId(uint256 newChainId) external;
/// Clears all mocked calls.
function clearMockedCalls() external;
/// Sets `block.coinbase`.
function coinbase(address newCoinbase) external;
/// Creates a new fork with the given endpoint and the _latest_ block and returns the identifier of the fork.
function createFork(string calldata urlOrAlias) external returns (uint256 forkId);
/// Creates a new fork with the given endpoint and block and returns the identifier of the fork.
function createFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId);
/// Creates a new fork with the given endpoint and at the block the given transaction was mined in,
/// replays all transaction mined in the block before the transaction, and returns the identifier of the fork.
function createFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId);
/// Creates and also selects a new fork with the given endpoint and the latest block and returns the identifier of the fork.
function createSelectFork(string calldata urlOrAlias) external returns (uint256 forkId);
/// Creates and also selects a new fork with the given endpoint and block and returns the identifier of the fork.
function createSelectFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId);
/// Creates and also selects new fork with the given endpoint and at the block the given transaction was mined in,
/// replays all transaction mined in the block before the transaction, returns the identifier of the fork.
function createSelectFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId);
/// Sets an address' balance.
function deal(address account, uint256 newBalance) external;
/// Removes the snapshot with the given ID created by `snapshot`.
/// Takes the snapshot ID to delete.
/// Returns `true` if the snapshot was successfully deleted.
/// Returns `false` if the snapshot does not exist.
function deleteSnapshot(uint256 snapshotId) external returns (bool success);
/// Removes _all_ snapshots previously created by `snapshot`.
function deleteSnapshots() external;
/// Sets `block.difficulty`.
/// Not available on EVM versions from Paris onwards. Use `prevrandao` instead.
/// Reverts if used on unsupported EVM versions.
function difficulty(uint256 newDifficulty) external;
/// Dump a genesis JSON file's `allocs` to disk.
function dumpState(string calldata pathToStateJson) external;
/// Sets an address' code.
function etch(address target, bytes calldata newRuntimeBytecode) external;
/// Sets `block.basefee`.
function fee(uint256 newBasefee) external;
/// Gets the blockhashes from the current transaction.
/// Not available on EVM versions before Cancun.
/// If used on unsupported EVM versions it will revert.
function getBlobhashes() external view returns (bytes32[] memory hashes);
/// Returns true if the account is marked as persistent.
function isPersistent(address account) external view returns (bool persistent);
/// Load a genesis JSON file's `allocs` into the in-memory revm state.
function loadAllocs(string calldata pathToAllocsJson) external;
/// Marks that the account(s) should use persistent storage across fork swaps in a multifork setup
/// Meaning, changes made to the state of this account will be kept when switching forks.
function makePersistent(address account) external;
/// See `makePersistent(address)`.
function makePersistent(address account0, address account1) external;
/// See `makePersistent(address)`.
function makePersistent(address account0, address account1, address account2) external;
/// See `makePersistent(address)`.
function makePersistent(address[] calldata accounts) external;
/// Reverts a call to an address with specified revert data.
function mockCallRevert(address callee, bytes calldata data, bytes calldata revertData) external;
/// Reverts a call to an address with a specific `msg.value`, with specified revert data.
function mockCallRevert(address callee, uint256 msgValue, bytes calldata data, bytes calldata revertData)
external;
/// Mocks a call to an address, returning specified data.
/// Calldata can either be strict or a partial match, e.g. if you only
/// pass a Solidity selector to the expected calldata, then the entire Solidity
/// function will be mocked.
function mockCall(address callee, bytes calldata data, bytes calldata returnData) external;
/// Mocks a call to an address with a specific `msg.value`, returning specified data.
/// Calldata match takes precedence over `msg.value` in case of ambiguity.
function mockCall(address callee, uint256 msgValue, bytes calldata data, bytes calldata returnData) external;
/// Whenever a call is made to `callee` with calldata `data`, this cheatcode instead calls
/// `target` with the same calldata. This functionality is similar to a delegate call made to
/// `target` contract from `callee`.
/// Can be used to substitute a call to a function with another implementation that captures
/// the primary logic of the original function but is easier to reason about.
/// If calldata is not a strict match then partial match by selector is attempted.
function mockFunction(address callee, address target, bytes calldata data) external;
/// Sets the *next* call's `msg.sender` to be the input address.
function prank(address msgSender) external;
/// Sets the *next* call's `msg.sender` to be the input address, and the `tx.origin` to be the second input.
function prank(address msgSender, address txOrigin) external;
/// Sets `block.prevrandao`.
/// Not available on EVM versions before Paris. Use `difficulty` instead.
/// If used on unsupported EVM versions it will revert.
function prevrandao(bytes32 newPrevrandao) external;
/// Sets `block.prevrandao`.
/// Not available on EVM versions before Paris. Use `difficulty` instead.
/// If used on unsupported EVM versions it will revert.
function prevrandao(uint256 newPrevrandao) external;
/// Reads the current `msg.sender` and `tx.origin` from state and reports if there is any active caller modification.
function readCallers() external returns (CallerMode callerMode, address msgSender, address txOrigin);
/// Resets the nonce of an account to 0 for EOAs and 1 for contract accounts.
function resetNonce(address account) external;
/// Revert the state of the EVM to a previous snapshot
/// Takes the snapshot ID to revert to.
/// Returns `true` if the snapshot was successfully reverted.
/// Returns `false` if the snapshot does not exist.
/// **Note:** This does not automatically delete the snapshot. To delete the snapshot use `deleteSnapshot`.
function revertTo(uint256 snapshotId) external returns (bool success);
/// Revert the state of the EVM to a previous snapshot and automatically deletes the snapshots
/// Takes the snapshot ID to revert to.
/// Returns `true` if the snapshot was successfully reverted and deleted.
/// Returns `false` if the snapshot does not exist.
function revertToAndDelete(uint256 snapshotId) external returns (bool success);
/// Revokes persistent status from the address, previously added via `makePersistent`.
function revokePersistent(address account) external;
/// See `revokePersistent(address)`.
function revokePersistent(address[] calldata accounts) external;
/// Sets `block.height`.
function roll(uint256 newHeight) external;
/// Updates the currently active fork to given block number
/// This is similar to `roll` but for the currently active fork.
function rollFork(uint256 blockNumber) external;
/// Updates the currently active fork to given transaction. This will `rollFork` with the number
/// of the block the transaction was mined in and replays all transaction mined before it in the block.
function rollFork(bytes32 txHash) external;
/// Updates the given fork to given block number.
function rollFork(uint256 forkId, uint256 blockNumber) external;
/// Updates the given fork to block number of the given transaction and replays all transaction mined before it in the block.
function rollFork(uint256 forkId, bytes32 txHash) external;
/// Takes a fork identifier created by `createFork` and sets the corresponding forked state as active.
function selectFork(uint256 forkId) external;
/// Set blockhash for the current block.
/// It only sets the blockhash for blocks where `block.number - 256 <= number < block.number`.
function setBlockhash(uint256 blockNumber, bytes32 blockHash) external;
/// Sets the nonce of an account. Must be higher than the current nonce of the account.
function setNonce(address account, uint64 newNonce) external;
/// Sets the nonce of an account to an arbitrary value.
function setNonceUnsafe(address account, uint64 newNonce) external;
/// Snapshot the current state of the evm.
/// Returns the ID of the snapshot that was created.
/// To revert a snapshot use `revertTo`.
function snapshot() external returns (uint256 snapshotId);
/// Sets all subsequent calls' `msg.sender` to be the input address until `stopPrank` is called.
function startPrank(address msgSender) external;
/// Sets all subsequent calls' `msg.sender` to be the input address until `stopPrank` is called, and the `tx.origin` to be the second input.
function startPrank(address msgSender, address txOrigin) external;
/// Resets subsequent calls' `msg.sender` to be `address(this)`.
function stopPrank() external;
/// Stores a value to an address' storage slot.
function store(address target, bytes32 slot, bytes32 value) external;
/// Fetches the given transaction from the active fork and executes it on the current state.
function transact(bytes32 txHash) external;
/// Fetches the given transaction from the given fork and executes it on the current state.
function transact(uint256 forkId, bytes32 txHash) external;
/// Sets `tx.gasprice`.
function txGasPrice(uint256 newGasPrice) external;
/// Sets `block.timestamp`.
function warp(uint256 newTimestamp) external;
// ======== Testing ========
/// Expect a call to an address with the specified `msg.value` and calldata, and a *minimum* amount of gas.
function expectCallMinGas(address callee, uint256 msgValue, uint64 minGas, bytes calldata data) external;
/// Expect given number of calls to an address with the specified `msg.value` and calldata, and a *minimum* amount of gas.
function expectCallMinGas(address callee, uint256 msgValue, uint64 minGas, bytes calldata data, uint64 count)
external;
/// Expects a call to an address with the specified calldata.
/// Calldata can either be a strict or a partial match.
function expectCall(address callee, bytes calldata data) external;
/// Expects given number of calls to an address with the specified calldata.
function expectCall(address callee, bytes calldata data, uint64 count) external;
/// Expects a call to an address with the specified `msg.value` and calldata.
function expectCall(address callee, uint256 msgValue, bytes calldata data) external;
/// Expects given number of calls to an address with the specified `msg.value` and calldata.
function expectCall(address callee, uint256 msgValue, bytes calldata data, uint64 count) external;
/// Expect a call to an address with the specified `msg.value`, gas, and calldata.
function expectCall(address callee, uint256 msgValue, uint64 gas, bytes calldata data) external;
/// Expects given number of calls to an address with the specified `msg.value`, gas, and calldata.
function expectCall(address callee, uint256 msgValue, uint64 gas, bytes calldata data, uint64 count) external;
/// Prepare an expected anonymous log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData.).
/// Call this function, then emit an anonymous event, then call a function. Internally after the call, we check if
/// logs were emitted in the expected order with the expected topics and data (as specified by the booleans).
function expectEmitAnonymous(bool checkTopic0, bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData)
external;
/// Same as the previous method, but also checks supplied address against emitting contract.
function expectEmitAnonymous(
bool checkTopic0,
bool checkTopic1,
bool checkTopic2,
bool checkTopic3,
bool checkData,
address emitter
) external;
/// Prepare an expected anonymous log with all topic and data checks enabled.
/// Call this function, then emit an anonymous event, then call a function. Internally after the call, we check if
/// logs were emitted in the expected order with the expected topics and data.
function expectEmitAnonymous() external;
/// Same as the previous method, but also checks supplied address against emitting contract.
function expectEmitAnonymous(address emitter) external;
/// Prepare an expected log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData.).
/// Call this function, then emit an event, then call a function. Internally after the call, we check if
/// logs were emitted in the expected order with the expected topics and data (as specified by the booleans).
function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData) external;
/// Same as the previous method, but also checks supplied address against emitting contract.
function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData, address emitter)
external;
/// Prepare an expected log with all topic and data checks enabled.
/// Call this function, then emit an event, then call a function. Internally after the call, we check if
/// logs were emitted in the expected order with the expected topics and data.
function expectEmit() external;
/// Same as the previous method, but also checks supplied address against emitting contract.
function expectEmit(address emitter) external;
/// Expects an error on next call that starts with the revert data.
function expectPartialRevert(bytes4 revertData) external;
/// Expects an error on next call to reverter address, that starts with the revert data.
function expectPartialRevert(bytes4 revertData, address reverter) external;
/// Expects an error on next call with any revert data.
function expectRevert() external;
/// Expects an error on next call that exactly matches the revert data.
function expectRevert(bytes4 revertData) external;
/// Expects an error on next call that exactly matches the revert data.
function expectRevert(bytes calldata revertData) external;
/// Expects an error with any revert data on next call to reverter address.
function expectRevert(address reverter) external;
/// Expects an error from reverter address on next call, with any revert data.
function expectRevert(bytes4 revertData, address reverter) external;
/// Expects an error from reverter address on next call, that exactly matches the revert data.
function expectRevert(bytes calldata revertData, address reverter) external;
/// Only allows memory writes to offsets [0x00, 0x60) ∪ [min, max) in the current subcontext. If any other
/// memory is written to, the test will fail. Can be called multiple times to add more ranges to the set.
function expectSafeMemory(uint64 min, uint64 max) external;
/// Only allows memory writes to offsets [0x00, 0x60) ∪ [min, max) in the next created subcontext.
/// If any other memory is written to, the test will fail. Can be called multiple times to add more ranges
/// to the set.
function expectSafeMemoryCall(uint64 min, uint64 max) external;
/// Marks a test as skipped. Must be called at the top level of a test.
function skip(bool skipTest) external;
/// Marks a test as skipped with a reason. Must be called at the top level of a test.
function skip(bool skipTest, string calldata reason) external;
/// Stops all safe memory expectation in the current subcontext.
function stopExpectSafeMemory() external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {StdStorage} from "./StdStorage.sol";
import {Vm, VmSafe} from "./Vm.sol";
abstract contract CommonBase {
// Cheat code address, 0x7109709ECfa91a80626fF3989D68f67F5b1DD12D.
address internal constant VM_ADDRESS = address(uint160(uint256(keccak256("hevm cheat code"))));
// console.sol and console2.sol work by executing a staticcall to this address.
address internal constant CONSOLE = 0x000000000000000000636F6e736F6c652e6c6f67;
// Used when deploying with create2, https://github.com/Arachnid/deterministic-deployment-proxy.
address internal constant CREATE2_FACTORY = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
// Default address for tx.origin and msg.sender, 0x1804c8AB1F12E6bbf3894d4083f33e07309d1f38.
address internal constant DEFAULT_SENDER = address(uint160(uint256(keccak256("foundry default caller"))));
// Address of the test contract, deployed by the DEFAULT_SENDER.
address internal constant DEFAULT_TEST_CONTRACT = 0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f;
// Deterministic deployment address of the Multicall3 contract.
address internal constant MULTICALL3_ADDRESS = 0xcA11bde05977b3631167028862bE2a173976CA11;
// The order of the secp256k1 curve.
uint256 internal constant SECP256K1_ORDER =
115792089237316195423570985008687907852837564279074904382605163141518161494337;
uint256 internal constant UINT256_MAX =
115792089237316195423570985008687907853269984665640564039457584007913129639935;
Vm internal constant vm = Vm(VM_ADDRESS);
StdStorage internal stdstore;
}
abstract contract TestBase is CommonBase {}
abstract contract ScriptBase is CommonBase {
VmSafe internal constant vmSafe = VmSafe(VM_ADDRESS);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuardTransient.sol)
pragma solidity ^0.8.24;
import {TransientSlot} from "./TransientSlot.sol";
/**
* @dev Variant of {ReentrancyGuard} that uses transient storage.
*
* NOTE: This variant only works on networks where EIP-1153 is available.
*
* _Available since v5.1._
*/
abstract contract ReentrancyGuardTransient {
using TransientSlot for *;
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD_STORAGE =
0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_reentrancyGuardEntered()) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
REENTRANCY_GUARD_STORAGE.asBoolean().tstore(true);
}
function _nonReentrantAfter() private {
REENTRANCY_GUARD_STORAGE.asBoolean().tstore(false);
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return REENTRANCY_GUARD_STORAGE.asBoolean().tload();
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
interface IMulticall3 {
struct Call {
address target;
bytes callData;
}
struct Call3 {
address target;
bool allowFailure;
bytes callData;
}
struct Call3Value {
address target;
bool allowFailure;
uint256 value;
bytes callData;
}
struct Result {
bool success;
bytes returnData;
}
function aggregate(Call[] calldata calls)
external
payable
returns (uint256 blockNumber, bytes[] memory returnData);
function aggregate3(Call3[] calldata calls) external payable returns (Result[] memory returnData);
function aggregate3Value(Call3Value[] calldata calls) external payable returns (Result[] memory returnData);
function blockAndAggregate(Call[] calldata calls)
external
payable
returns (uint256 blockNumber, bytes32 blockHash, Result[] memory returnData);
function getBasefee() external view returns (uint256 basefee);
function getBlockHash(uint256 blockNumber) external view returns (bytes32 blockHash);
function getBlockNumber() external view returns (uint256 blockNumber);
function getChainId() external view returns (uint256 chainid);
function getCurrentBlockCoinbase() external view returns (address coinbase);
function getCurrentBlockDifficulty() external view returns (uint256 difficulty);
function getCurrentBlockGasLimit() external view returns (uint256 gaslimit);
function getCurrentBlockTimestamp() external view returns (uint256 timestamp);
function getEthBalance(address addr) external view returns (uint256 balance);
function getLastBlockHash() external view returns (bytes32 blockHash);
function tryAggregate(bool requireSuccess, Call[] calldata calls)
external
payable
returns (Result[] memory returnData);
function tryBlockAndAggregate(bool requireSuccess, Call[] calldata calls)
external
payable
returns (uint256 blockNumber, bytes32 blockHash, Result[] memory returnData);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {IERC20} from "../interfaces/IERC20.sol";
/// @notice This is a mock contract of the ERC20 standard for testing purposes only, it SHOULD NOT be used in production.
/// @dev Forked from: https://github.com/transmissions11/solmate/blob/0384dbaaa4fcb5715738a9254a7c0a4cb62cf458/src/tokens/ERC20.sol
contract MockERC20 is IERC20 {
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string internal _name;
string internal _symbol;
uint8 internal _decimals;
function name() external view override returns (string memory) {
return _name;
}
function symbol() external view override returns (string memory) {
return _symbol;
}
function decimals() external view override returns (uint8) {
return _decimals;
}
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal _totalSupply;
mapping(address => uint256) internal _balanceOf;
mapping(address => mapping(address => uint256)) internal _allowance;
function totalSupply() external view override returns (uint256) {
return _totalSupply;
}
function balanceOf(address owner) external view override returns (uint256) {
return _balanceOf[owner];
}
function allowance(address owner, address spender) external view override returns (uint256) {
return _allowance[owner][spender];
}
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal INITIAL_CHAIN_ID;
bytes32 internal INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
INITIALIZE
//////////////////////////////////////////////////////////////*/
/// @dev A bool to track whether the contract has been initialized.
bool private initialized;
/// @dev To hide constructor warnings across solc versions due to different constructor visibility requirements and
/// syntaxes, we add an initialization function that can be called only once.
function initialize(string memory name_, string memory symbol_, uint8 decimals_) public {
require(!initialized, "ALREADY_INITIALIZED");
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
INITIAL_CHAIN_ID = _pureChainId();
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
initialized = true;
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual override returns (bool) {
_balanceOf[msg.sender] = _sub(_balanceOf[msg.sender], amount);
_balanceOf[to] = _add(_balanceOf[to], amount);
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
uint256 allowed = _allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != ~uint256(0)) _allowance[from][msg.sender] = _sub(allowed, amount);
_balanceOf[from] = _sub(_balanceOf[from], amount);
_balanceOf[to] = _add(_balanceOf[to], amount);
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
public
virtual
{
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
_allowance[recoveredAddress][spender] = value;
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return _pureChainId() == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(_name)),
keccak256("1"),
_pureChainId(),
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
_totalSupply = _add(_totalSupply, amount);
_balanceOf[to] = _add(_balanceOf[to], amount);
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
_balanceOf[from] = _sub(_balanceOf[from], amount);
_totalSupply = _sub(_totalSupply, amount);
emit Transfer(from, address(0), amount);
}
/*//////////////////////////////////////////////////////////////
INTERNAL SAFE MATH LOGIC
//////////////////////////////////////////////////////////////*/
function _add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "ERC20: addition overflow");
return c;
}
function _sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(a >= b, "ERC20: subtraction underflow");
return a - b;
}
/*//////////////////////////////////////////////////////////////
HELPERS
//////////////////////////////////////////////////////////////*/
// We use this complex approach of `_viewChainId` and `_pureChainId` to ensure there are no
// compiler warnings when accessing chain ID in any solidity version supported by forge-std. We
// can't simply access the chain ID in a normal view or pure function because the solc View Pure
// Checker changed `chainid` from pure to view in 0.8.0.
function _viewChainId() private view returns (uint256 chainId) {
// Assembly required since `block.chainid` was introduced in 0.8.0.
assembly {
chainId := chainid()
}
address(this); // Silence warnings in older Solc versions.
}
function _pureChainId() private pure returns (uint256 chainId) {
function() internal view returns (uint256) fnIn = _viewChainId;
function() internal pure returns (uint256) pureChainId;
assembly {
pureChainId := fnIn
}
chainId = pureChainId();
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {IERC721Metadata, IERC721TokenReceiver} from "../interfaces/IERC721.sol";
/// @notice This is a mock contract of the ERC721 standard for testing purposes only, it SHOULD NOT be used in production.
/// @dev Forked from: https://github.com/transmissions11/solmate/blob/0384dbaaa4fcb5715738a9254a7c0a4cb62cf458/src/tokens/ERC721.sol
contract MockERC721 is IERC721Metadata {
/*//////////////////////////////////////////////////////////////
METADATA STORAGE/LOGIC
//////////////////////////////////////////////////////////////*/
string internal _name;
string internal _symbol;
function name() external view override returns (string memory) {
return _name;
}
function symbol() external view override returns (string memory) {
return _symbol;
}
function tokenURI(uint256 id) public view virtual override returns (string memory) {}
/*//////////////////////////////////////////////////////////////
ERC721 BALANCE/OWNER STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) internal _ownerOf;
mapping(address => uint256) internal _balanceOf;
function ownerOf(uint256 id) public view virtual override returns (address owner) {
require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
}
function balanceOf(address owner) public view virtual override returns (uint256) {
require(owner != address(0), "ZERO_ADDRESS");
return _balanceOf[owner];
}
/*//////////////////////////////////////////////////////////////
ERC721 APPROVAL STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) internal _getApproved;
mapping(address => mapping(address => bool)) internal _isApprovedForAll;
function getApproved(uint256 id) public view virtual override returns (address) {
return _getApproved[id];
}
function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
return _isApprovedForAll[owner][operator];
}
/*//////////////////////////////////////////////////////////////
INITIALIZE
//////////////////////////////////////////////////////////////*/
/// @dev A bool to track whether the contract has been initialized.
bool private initialized;
/// @dev To hide constructor warnings across solc versions due to different constructor visibility requirements and
/// syntaxes, we add an initialization function that can be called only once.
function initialize(string memory name_, string memory symbol_) public {
require(!initialized, "ALREADY_INITIALIZED");
_name = name_;
_symbol = symbol_;
initialized = true;
}
/*//////////////////////////////////////////////////////////////
ERC721 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 id) public payable virtual override {
address owner = _ownerOf[id];
require(msg.sender == owner || _isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");
_getApproved[id] = spender;
emit Approval(owner, spender, id);
}
function setApprovalForAll(address operator, bool approved) public virtual override {
_isApprovedForAll[msg.sender][operator] = approved;
emit ApprovalForAll(msg.sender, operator, approved);
}
function transferFrom(address from, address to, uint256 id) public payable virtual override {
require(from == _ownerOf[id], "WRONG_FROM");
require(to != address(0), "INVALID_RECIPIENT");
require(
msg.sender == from || _isApprovedForAll[from][msg.sender] || msg.sender == _getApproved[id],
"NOT_AUTHORIZED"
);
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
_balanceOf[from]--;
_balanceOf[to]++;
_ownerOf[id] = to;
delete _getApproved[id];
emit Transfer(from, to, id);
}
function safeTransferFrom(address from, address to, uint256 id) public payable virtual override {
transferFrom(from, to, id);
require(
!_isContract(to)
|| IERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "")
== IERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function safeTransferFrom(address from, address to, uint256 id, bytes memory data)
public
payable
virtual
override
{
transferFrom(from, to, id);
require(
!_isContract(to)
|| IERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data)
== IERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
/*//////////////////////////////////////////////////////////////
ERC165 LOGIC
//////////////////////////////////////////////////////////////*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == 0x01ffc9a7 // ERC165 Interface ID for ERC165
|| interfaceId == 0x80ac58cd // ERC165 Interface ID for ERC721
|| interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 id) internal virtual {
require(to != address(0), "INVALID_RECIPIENT");
require(_ownerOf[id] == address(0), "ALREADY_MINTED");
// Counter overflow is incredibly unrealistic.
_balanceOf[to]++;
_ownerOf[id] = to;
emit Transfer(address(0), to, id);
}
function _burn(uint256 id) internal virtual {
address owner = _ownerOf[id];
require(owner != address(0), "NOT_MINTED");
_balanceOf[owner]--;
delete _ownerOf[id];
delete _getApproved[id];
emit Transfer(owner, address(0), id);
}
/*//////////////////////////////////////////////////////////////
INTERNAL SAFE MINT LOGIC
//////////////////////////////////////////////////////////////*/
function _safeMint(address to, uint256 id) internal virtual {
_mint(to, id);
require(
!_isContract(to)
|| IERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "")
== IERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function _safeMint(address to, uint256 id, bytes memory data) internal virtual {
_mint(to, id);
require(
!_isContract(to)
|| IERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data)
== IERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
/*//////////////////////////////////////////////////////////////
HELPERS
//////////////////////////////////////////////////////////////*/
function _isContract(address _addr) private view returns (bool) {
uint256 codeLength;
// Assembly required for versions < 0.8.0 to check extcodesize.
assembly {
codeLength := extcodesize(_addr)
}
return codeLength > 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;
/// @dev Interface of the ERC20 standard as defined in the EIP.
/// @dev This includes the optional name, symbol, and decimals metadata.
interface IERC20 {
/// @dev Emitted when `value` tokens are moved from one account (`from`) to another (`to`).
event Transfer(address indexed from, address indexed to, uint256 value);
/// @dev Emitted when the allowance of a `spender` for an `owner` is set, where `value`
/// is the new allowance.
event Approval(address indexed owner, address indexed spender, uint256 value);
/// @notice Returns the amount of tokens in existence.
function totalSupply() external view returns (uint256);
/// @notice Returns the amount of tokens owned by `account`.
function balanceOf(address account) external view returns (uint256);
/// @notice Moves `amount` tokens from the caller's account to `to`.
function transfer(address to, uint256 amount) external returns (bool);
/// @notice Returns the remaining number of tokens that `spender` is allowed
/// to spend on behalf of `owner`
function allowance(address owner, address spender) external view returns (uint256);
/// @notice Sets `amount` as the allowance of `spender` over the caller's tokens.
/// @dev Be aware of front-running risks: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
function approve(address spender, uint256 amount) external returns (bool);
/// @notice Moves `amount` tokens from `from` to `to` using the allowance mechanism.
/// `amount` is then deducted from the caller's allowance.
function transferFrom(address from, address to, uint256 amount) external returns (bool);
/// @notice Returns the name of the token.
function name() external view returns (string memory);
/// @notice Returns the symbol of the token.
function symbol() external view returns (string memory);
/// @notice Returns the decimals places of the token.
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;
import "./IERC165.sol";
/// @title ERC-721 Non-Fungible Token Standard
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x80ac58cd.
interface IERC721 is IERC165 {
/// @dev This emits when ownership of any NFT changes by any mechanism.
/// This event emits when NFTs are created (`from` == 0) and destroyed
/// (`to` == 0). Exception: during contract creation, any number of NFTs
/// may be created and assigned without emitting Transfer. At the time of
/// any transfer, the approved address for that NFT (if any) is reset to none.
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
/// @dev This emits when the approved address for an NFT is changed or
/// reaffirmed. The zero address indicates there is no approved address.
/// When a Transfer event emits, this also indicates that the approved
/// address for that NFT (if any) is reset to none.
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
/// @dev This emits when an operator is enabled or disabled for an owner.
/// The operator can manage all NFTs of the owner.
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/// @notice Count all NFTs assigned to an owner
/// @dev NFTs assigned to the zero address are considered invalid, and this
/// function throws for queries about the zero address.
/// @param _owner An address for whom to query the balance
/// @return The number of NFTs owned by `_owner`, possibly zero
function balanceOf(address _owner) external view returns (uint256);
/// @notice Find the owner of an NFT
/// @dev NFTs assigned to zero address are considered invalid, and queries
/// about them do throw.
/// @param _tokenId The identifier for an NFT
/// @return The address of the owner of the NFT
function ownerOf(uint256 _tokenId) external view returns (address);
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT. When transfer is complete, this function
/// checks if `_to` is a smart contract (code size > 0). If so, it calls
/// `onERC721Received` on `_to` and throws if the return value is not
/// `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
/// @param data Additional data with no specified format, sent in call to `_to`
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev This works identically to the other function with an extra data parameter,
/// except this function just sets data to "".
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
/// THEY MAY BE PERMANENTLY LOST
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
/// Throws unless `msg.sender` is the current NFT owner, or an authorized
/// operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external payable;
/// @notice Enable or disable approval for a third party ("operator") to manage
/// all of `msg.sender`'s assets
/// @dev Emits the ApprovalForAll event. The contract MUST allow
/// multiple operators per owner.
/// @param _operator Address to add to the set of authorized operators
/// @param _approved True if the operator is approved, false to revoke approval
function setApprovalForAll(address _operator, bool _approved) external;
/// @notice Get the approved address for a single NFT
/// @dev Throws if `_tokenId` is not a valid NFT.
/// @param _tokenId The NFT to find the approved address for
/// @return The approved address for this NFT, or the zero address if there is none
function getApproved(uint256 _tokenId) external view returns (address);
/// @notice Query if an address is an authorized operator for another address
/// @param _owner The address that owns the NFTs
/// @param _operator The address that acts on behalf of the owner
/// @return True if `_operator` is an approved operator for `_owner`, false otherwise
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
/// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02.
interface IERC721TokenReceiver {
/// @notice Handle the receipt of an NFT
/// @dev The ERC721 smart contract calls this function on the recipient
/// after a `transfer`. This function MAY throw to revert and reject the
/// transfer. Return of other than the magic value MUST result in the
/// transaction being reverted.
/// Note: the contract address is always the message sender.
/// @param _operator The address which called `safeTransferFrom` function
/// @param _from The address which previously owned the token
/// @param _tokenId The NFT identifier which is being transferred
/// @param _data Additional data with no specified format
/// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
/// unless throwing
function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data)
external
returns (bytes4);
}
/// @title ERC-721 Non-Fungible Token Standard, optional metadata extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x5b5e139f.
interface IERC721Metadata is IERC721 {
/// @notice A descriptive name for a collection of NFTs in this contract
function name() external view returns (string memory _name);
/// @notice An abbreviated name for NFTs in this contract
function symbol() external view returns (string memory _symbol);
/// @notice A distinct Uniform Resource Identifier (URI) for a given asset.
/// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
/// 3986. The URI may point to a JSON file that conforms to the "ERC721
/// Metadata JSON Schema".
function tokenURI(uint256 _tokenId) external view returns (string memory);
}
/// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x780e9d63.
interface IERC721Enumerable is IERC721 {
/// @notice Count NFTs tracked by this contract
/// @return A count of valid NFTs tracked by this contract, where each one of
/// them has an assigned and queryable owner not equal to the zero address
function totalSupply() external view returns (uint256);
/// @notice Enumerate valid NFTs
/// @dev Throws if `_index` >= `totalSupply()`.
/// @param _index A counter less than `totalSupply()`
/// @return The token identifier for the `_index`th NFT,
/// (sort order not specified)
function tokenByIndex(uint256 _index) external view returns (uint256);
/// @notice Enumerate NFTs assigned to an owner
/// @dev Throws if `_index` >= `balanceOf(_owner)` or if
/// `_owner` is the zero address, representing invalid NFTs.
/// @param _owner An address where we are interested in NFTs owned by them
/// @param _index A counter less than `balanceOf(_owner)`
/// @return The token identifier for the `_index`th NFT assigned to `_owner`,
/// (sort order not specified)
function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;
interface IERC165 {
/// @notice Query if a contract implements an interface
/// @param interfaceID The interface identifier, as specified in ERC-165
/// @dev Interface identification is specified in ERC-165. This function
/// uses less than 30,000 gas.
/// @return `true` if the contract implements `interfaceID` and
/// `interfaceID` is not 0xffffffff, `false` otherwise
function supportsInterface(bytes4 interfaceID) external view returns (bool);
}{
"remappings": [
"lib/universal-router:solmate/=lib/solmate/",
"lib/universal-router:permit2/=lib/permit2/",
"ds-test/=lib/solmate/lib/ds-test/src/",
"forge-std/=lib/forge-std/src/",
"contracts:openzeppelin/=lib/openzeppelin-contracts/contracts/",
"test:openzeppelin/=lib/openzeppelin-contracts/contracts/",
"script:openzeppelin/=lib/openzeppelin-contracts/contracts/",
"contracts:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
"script:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
"test:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
"contracts:openzeppelin-v4/=lib/openzeppelin-contracts/contracts/",
"contracts:openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"contracts:solmate/=lib/solmate/src/",
"lib:solmate/=lib/solmate/",
"script:solmate/=lib/solmate/src/",
"contracts:permit2/=lib/permit2/src/",
"script:permit2/=lib/permit2/src/",
"universal-router/=lib/universal-router/contracts/",
"multicall/=lib/multicall/src/",
"@uniswap/v3-core/contracts/=contracts/univ3/",
"@uniswap/v2-core/contracts/=contracts/univ2/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@ds/=lib/multicall/lib/ds-test/src/",
"@std/=lib/multicall/lib/forge-std/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/permit2/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-v5/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-v5/=lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"permit2/=lib/permit2/",
"prb-math/=lib/prb-math/src/",
"solmate/=lib/solmate/src/",
"v3-periphery/=lib/v3-periphery/contracts/"
],
"optimizer": {
"enabled": true,
"runs": 1000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": false
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": true
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVoter","name":"voter_","type":"address"},{"internalType":"address","name":"gauge_","type":"address"},{"internalType":"address","name":"rewardToken_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxDeposit","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxMint","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxRedeem","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxWithdraw","type":"error"},{"inputs":[],"name":"ReceiverNotWhitelisted","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"emissionRate","type":"uint128"},{"indexed":false,"internalType":"uint32","name":"begin","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"end","type":"uint32"}],"name":"BribeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Collect","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Collect","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Distribute","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"address","name":"rewardToken","type":"address"}],"name":"Poke","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Unstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"uint128","name":"emissionRate","type":"uint128"},{"internalType":"uint32","name":"begin","type":"uint32"},{"internalType":"uint32","name":"end","type":"uint32"}],"name":"addBribe","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"maxAmount","type":"uint128"}],"name":"collect","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"collectAll","outputs":[{"internalType":"uint128[]","name":"","type":"uint128[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"collectableAmount","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"collectableAmountWithUpdate","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"t","type":"uint256"}],"name":"emissionRateAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getWeight","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"outputTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"tokenInputPerSecondX128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"tokenOutputPerSecondX128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"t","type":"uint256"}],"name":"totalEmissionAt","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"totalEmitted","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"voter","outputs":[{"internalType":"contract IVoter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
61014080604052346103f557606081613c68803803809161002082856106ff565b8339810103126103f55780516001600160a01b038116918282036103f557610056604061004f60208401610722565b9201610722565b9160206100c060086033610069876107b3565b6040519485917f566f74696e67205265636569707420666f722000000000000000000000000000828401528051918291018484015e810167207265776172647360c01b8382015203016017198101845201826106ff565b60405163561c885160e11b81526020816004815f8a5af1908115610694575f916106c1575b506040516395d89b4160e01b8152905f90829060049082906001600160a01b03165afa8015610694576026610153916020935f9161069f575b5060405193849165766f7465642d60d01b828401528051918291018484015e81015f838201520301601f1981018352826106ff565b60405163561c885160e11b81526020816004815f8b5af1908115610694575f9161065a575b5082516001600160a01b0391909116926001600160401b03821161055d5760035490600182811c92168015610650575b602083101461053f5781601f8493116105e2575b50602090601f831160011461057c575f92610571575b50508160011b915f199060031b1c1916176003555b8051906001600160401b03821161055d5760045490600182811c92168015610553575b602083101461053f5781601f8493116104d1575b50602090601f831160011461046b575f92610460575b50508160011b915f199060031b1c1916176004555b61025281610827565b9015610458575b60a0526080526040936020855161027087826106ff565b601881527f546f6b656e53747265616d456d69747465722e4443414c5000000000000000009101527fb765a13aa680e6970b613a34bc2c201fa06fb52aaa4699833f52c182126770905f9081527fbb8471eadcf4ad67b38eb641c8fc0f6191bd9198c54d548851c2c98d5314b10060c052855163561c885160e11b81529060209082906004908290865af190811561044e575f9161040b575b50855163095ea7b360e01b815260048101929092525f196024830152602090829060449082905f906001600160a01b03165af18015610401576103c9575b5060e05261010052610120525161339d90816108cb8239608051818181610c180152818161231c0152612828015260a05181610c50015260c0518161206b015260e051818181610bae015281816123f701526126bd01526101005181818161087301528181612446015261270d0152610120518181816101fe015261198c0152f35b6020813d6020116103f9575b816103e2602093836106ff565b810103126103f557518015158114610347575b5f80fd5b3d91506103d5565b85513d5f823e3d90fd5b90506020813d602011610446575b81610426602093836106ff565b810103126103f5575f91604461043d602093610722565b92505091610309565b3d9150610419565b86513d5f823e3d90fd5b506012610259565b015190505f80610234565b60045f9081528281209350601f198516905b8181106104b957509084600195949392106104a1575b505050811b01600455610249565b01515f1960f88460031b161c191690555f8080610493565b9293602060018192878601518155019501930161047d565b60045f529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610535575b90601f859493920160051c01905b818110610527575061021e565b5f815584935060010161051a565b909150819061050c565b634e487b7160e01b5f52602260045260245ffd5b91607f169161020a565b634e487b7160e01b5f52604160045260245ffd5b015190505f806101d2565b60035f9081528281209350601f198516905b8181106105ca57509084600195949392106105b2575b505050811b016003556101e7565b01515f1960f88460031b161c191690555f80806105a4565b9293602060018192878601518155019501930161058e565b60035f529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c81019160208510610646575b90601f859493920160051c01905b81811061063857506101bc565b5f815584935060010161062b565b909150819061061d565b91607f16916101a8565b90506020813d60201161068c575b81610675602093836106ff565b810103126103f55761068690610722565b5f610178565b3d9150610668565b6040513d5f823e3d90fd5b6106bb91503d805f833e6106b381836106ff565b810190610751565b5f61011e565b90506020813d6020116106f7575b816106dc602093836106ff565b810103126103f5575f6106f0600492610722565b91506100e5565b3d91506106cf565b601f909101601f19168101906001600160401b0382119082101761055d57604052565b51906001600160a01b03821682036103f557565b6001600160401b03811161055d57601f01601f191660200190565b6020818303126103f5578051906001600160401b0382116103f5570181601f820112156103f55780519061078482610736565b9261079260405194856106ff565b828452602083830101116103f557815f9260208093018386015e8301015290565b6040516395d89b4160e01b8152905f90829060049082906001600160a01b03165afa5f918161080b575b5061080857506040516107f16040826106ff565b60078152662aa725a727aba760c91b602082015290565b90565b6108209192503d805f833e6106b381836106ff565b905f6107dd565b5f8091604051602081019063313ce56760e01b82526004815261084b6024826106ff565b51916001600160a01b03165afa3d156108c2573d9061086982610736565b9161087760405193846106ff565b82523d5f602084013e5b806108b6575b610893575b505f905f90565b6020818051810103126103f5576020015160ff811161088c579060ff6001921690565b50602081511015610887565b60609061088156fe6080806040526004361015610012575f80fd5b5f3560e01c90816301e1d114146110295750806306aba0e11461100c57806306fdde0314610f5157806307a2d13a14610226578063095ea7b314610e775780630a28a4771461063057806312d64cd314610e5257806314b40f6114610e2657806318160ddd14610e0957806320ae905b14610cfc578063220f26a414610cbb57806323b872dd14610c83578063313ce56714610c3c57806338d52e0f14610bf95780633c77882e14610bd2578063402d267d146104e357806346c96aac14610b8f57806348aed0ba14610b2a5780634cdad5061461022657806359f1930814610ac25780636e553f6514610a4257806370a08231146102b357806390901bbc14610a1b57806394bf804d1461099b57806395d89b4114610897578063a6f19c8414610854578063a9059cbb14610823578063ac6c5251146107ef578063ae2a3be31461064d578063b3d7f6b914610630578063b460af94146105aa578063ba08765214610506578063c63d75b6146104e3578063c6e6f59214610226578063ce96cb77146102b3578063d657c9e7146102e8578063d905777e146102b3578063dcb9b6b91461027f578063dd62ed3e1461022b578063ef8b30f7146102265763f7c618c1146101df575f80fd5b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b5f80fd5b610630565b346102225760403660031901126102225761024461106d565b6001600160a01b03610254611083565b91165f5260016020526001600160a01b0360405f2091165f52602052602060405f2054604051908152f35b346102225760403660031901126102225760206102ab61029d61106d565b6102a5611083565b90611f4d565b604051908152f35b346102225760203660031901126102225760206102ab6102d161106d565b6001600160a01b03165f525f60205260405f205490565b346102225760203660031901126102225761030161106d565b610309611371565b61031161195f565b8051916103366103208461121e565b9361032e60405195866110d3565b80855261121e565b602084019290601f19013684376001600160a01b038216915f5b825181101561047357806103996001600160a01b036103716001948761117a565b511684610391336001600160a01b0361038a878b61117a565b51166113e5565b913390611456565b6001600160801b036103ab838a61117a565b911690526103cc336001600160a01b036103c5848861117a565b5116611236565b9061042f575b50846001600160a01b036103e6838761117a565b51166001600160801b036103fa848b61117a565b5116906040519182527fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c360860203393a401610350565b61046d906104656001600160a01b03610448858961117a565b5116916001600160801b0361045d868d61117a565b51169061112c565b9033906115a5565b876103d2565b84865f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051918291602083019060208452518091526040830191905f5b8181106104c1575050500390f35b82516001600160801b03168452859450602093840193909201916001016104b3565b346102225760203660031901126102225760206102ab61050161106d565b6111d2565b346102225761051436611099565b919061051e611371565b6001600160a01b038316805f525f60205260405f2054908184116105775760208461054c81808988336126b1565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b83907fb94abeec000000000000000000000000000000000000000000000000000000005f5260045260245260445260645ffd5b34610222576105b836611099565b91906105c2611371565b6105dd836001600160a01b03165f525f60205260405f205490565b8083116105f45750818060209461054c93336126b1565b826001600160a01b03857ffe9cceec000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b346102225760203660031901126102225760206040516004358152f35b34610222576060366003190112610222576004356001600160801b0381168091036102225760243563ffffffff811691828203610222576044359163ffffffff831690818403610222579360014201908142116107895781116107e1575b5063ffffffff84168181101561079d5780820363ffffffff81116107895763ffffffff1683026001600160801b038116908103610789577f7779080f097bd53cad76bd3714ede1859eb34faa343baa401fda4f501ba2a37195606095610731610776936001600160a01b0361072661072161195f565b611159565b5116309033906119b0565b61073a86611a0f565b9061077161074b86600f0b8461118e565b610754846111a5565b9361076b610761826111a5565b8a600f0b9061118e565b95611a87565b611a87565b60405192835260208301526040820152a1005b634e487b7160e01b5f52601160045260245ffd5b606460405162461bcd60e51b815260206004820152601260248201527f496e76616c69642074696d652072616e676500000000000000000000000000006044820152fd5b63ffffffff169350846106ab565b3461022257602036600319011261022257602061081261080d61106d565b611933565b6001600160801b0360405191168152f35b346102225760403660031901126102225761084961083f61106d565b60243590336116c1565b602060405160018152f35b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610222575f366003190112610222576040515f6004548060011c90600181168015610991575b60208310811461097d5782855290811561095957506001146108fb575b6108f7836108eb818503826110d3565b60405191829182611043565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061093f575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610927565b60ff191660208086019190915291151560051b840190910191506108eb90506108db565b634e487b7160e01b5f52602260045260245ffd5b91607f16916108be565b34610222576040366003190112610222576004356109b7611083565b906109c0611371565b6109c9826111d2565b8082116109df575061054c818060209433612311565b916001600160a01b03907f284ff667000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610812610a3961106d565b60243590611894565b3461022257604036600319011261022257600435610a5e611083565b90610a67611371565b610a70826111d2565b808211610a86575061054c818060209433612311565b916001600160a01b03907f79012fb2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610af6610ae061106d565b610ae8611083565b90610af1611371565b6113e5565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d6001600160801b0360405191168152f35b34610222575f36600319011261022257610b4261195f565b6040518091602082016020835281518091526020604084019201905f5b818110610b6d575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610b5f565b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b346102225760403660031901126102225760206102ab610bf061106d565b60243590611835565b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610222575f3660031901126102225760ff7f00000000000000000000000000000000000000000000000000000000000000001660ff811161078957602090604051908152f35b3461022257606036600319011261022257610849610c9f61106d565b610ca7611083565b60443591610cb68333836115ff565b6116c1565b34610222576020366003190112610222576001600160a01b03610cdc61106d565b165f52600560205260206001600160801b0360405f205416604051908152f35b3461022257606036600319011261022257610d1561106d565b610d1d611083565b604435916001600160801b03831680930361022257610d656001600160801b03602094610d48611371565b81610d5333866113e5565b16818082109118021816833384611456565b9081610d713383611236565b90610dee575b50506001600160a01b036001600160801b0360405193169384845216917fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c3608856001600160a01b0333941692a45f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b610e0291610dfb9161112c565b33836115a5565b8185610d77565b34610222575f366003190112610222576020600254604051908152f35b34610222576040366003190112610222576020610812610e4461106d565b610e4c611083565b90611109565b346102225760203660031901126102225760206102ab610e7061106d565b4290611835565b3461022257604036600319011261022257610e9061106d565b602435903315610f25576001600160a01b0316908115610ef957335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b7f94280d62000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b7fe602df05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b34610222575f366003190112610222576040515f6003548060011c90600181168015611002575b60208310811461097d578285529081156109595750600114610fa4576108f7836108eb818503826110d3565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610fe8575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610fd0565b91607f1691610f78565b34610222575f366003190112610222576020600854604051908152f35b34610222575f366003190112610222576020906002548152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361022257565b602435906001600160a01b038216820361022257565b606090600319011261022257600435906024356001600160a01b038116810361022257906044356001600160a01b03811681036102225790565b90601f8019910116810190811067ffffffffffffffff8211176110f557604052565b634e487b7160e01b5f52604160045260245ffd5b906111148183611236565b929061112757611124925061129f565b90565b505090565b906001600160801b03809116911603906001600160801b03821161078957565b9190820180921161078957565b8051156111665760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111665760209160051b010190565b90600f0b90600f0b029081600f0b91820361078957565b600f0b6f7fffffffffffffffffffffffffffffff198114610789575f0390565b9190820391821161078957565b6001600160a01b0316805f525f6020526001600160801b0360405f205411611219575f525f60205260405f20546001600160801b03036001600160801b0381116107895790565b505f90565b67ffffffffffffffff81116110f55760051b60200190565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f5260205260405f205c60018160ff1c1461128f57505f905f90565b906001600160801b036001921690565b6112a881611f84565b916001600160a01b0382165f52600b6020526001600160801b0360405f20541692836001600160801b03821611156113695761135661135d9361133e6113126112fa6001600160801b0398899661112c565b926001600160a01b03165f52600a60205260405f2090565b916001600160a01b0386165f526002830160205261133860405f20935491600854612a87565b9061114c565b61134e8460018401541695611933565b915491612aa3565b169061114c565b80821081831802181690565b505050505f90565b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6113bd5760017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b6113ef8282611236565b90611450575061112490611401611f9d565b61140a8361205b565b6002611427826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f526020526001600160801b03600160405f200154169283916115a5565b91505090565b9161152c92611463611f9d565b61146c8361205b565b6002611489826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f52602052600160405f20016001600160801b03815416956001600160801b0387811088821802881816806001600160801b03831611155f1461159b57509586945b6001600160801b038616928684611530575b50505050506001600160a01b0381165f52600b60205260405f206001600160801b03611517858284541661112c565b166001600160801b031982541617905561217d565b5090565b61154a6001600160801b03916001600160a01b039561112c565b166001600160801b031982541617905560405192835216907f1314fd112a381beea61539dbd21ec04afcff2662ac7d1b83273aade1f53d1b9760206001600160a01b03851692a35f808080866114e8565b90509586946114d6565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f526020526001600160801b0360405f209116600160ff1b17905d565b6001600160a01b03909291921691825f52600160205260405f206001600160a01b0382165f5260205260405f2054925f19841061163d575b50505050565b828410611684578015610f25576001600160a01b03821615610ef9575f5260016020526001600160a01b0360405f2091165f5260205260405f20910390555f808080611637565b506001600160a01b0383917ffb8f41b2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b906001600160a01b0382168015611822576001600160a01b0382169081156117f657805f525f60205260405f20548581106117dc578590825f525f6020520360405f2055815f525f60205260405f208581540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798578261175857505050565b6117806001600160801b0361179694168093611772611f9d565b61177b8161205b565b61324d565b611788611f9d565b6117918161205b565b61331a565b565b606460405162461bcd60e51b815260206004820152600f60248201527f76616c756520746f6f206c6172676500000000000000000000000000000000006044820152fd5b859163391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b038061184961072161195f565b51169116036112195763ffffffff8111611889575b63ffffffff61186d9116612204565b505f81600f0b13156112195760801b6001600160801b03191690565b5063ffffffff61185e565b6001600160a01b03806118a861072161195f565b51169116036112195763ffffffff8111611928575b6118cc63ffffffff8216612204565b90600f0b82810292600160ff1b81145f83121661078957818405149015171561078957600f0b905f82820392128183128116918313901516176107895761191290611a0f565b5f81600f0b12611219576001600160801b031690565b5063ffffffff6118bd565b6001600160a01b03165f52600960205260405f205460ff81166112195760081c6001600160801b031690565b6040519061196e6040836110d3565b600182526020368184013761198282611159565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169052565b9091926001600160a01b036117969481604051957f23b872dd000000000000000000000000000000000000000000000000000000006020880152166024860152166044840152606483015260648252611a0a6084836110d3565b6124db565b9081600f0b91808303611a1f5750565b7f327269a7000000000000000000000000000000000000000000000000000000005f52608060045260245260445ffd5b90600f0b90600f0b01906f7fffffffffffffffffffffffffffffff1982126f7fffffffffffffffffffffffffffffff83131761078957565b909163ffffffff82168015611f095783600f0b1580611efe575b61163757611ab0836006612548565b9290611e45575f82815260066020526040902080547fffffff00000000000000000000000000000000ffffffffffffffffff000000001663ffffffff8516177cffffffffffffffffffffffffffffffff00000000000000000000000000606888901b161781559394611b8b94600291611b429060801b6001600160801b0319166001600160801b038516176001830155565b01906001600160801b0319825416906001600160801b0316179055611b6884600661260e565b63ffffffff821680611dd7575063ffffffff1960075416176007555b60066125d6565b906006915b63ffffffff811690815f528360205263ffffffff8060405f205416165f5283602052600160405f205460601c1615611dc157815f528360205263ffffffff60405f205416805f528460205263ffffffff60405f20541692835f528560205263ffffffff60405f205460201c1682145f14611cf7575063ffffffff83165f528460205263ffffffff60405f205460401c169163ffffffff83165f5285602052600160405f205460601c1615155f14611c68575090611c50611c569286612667565b84612667565b611c60818461260e565b915b91611b90565b9492915063ffffffff8116805f528360205263ffffffff60405f205460401c1663ffffffff871614611cb9575b5090611ca4611cb49284612667565b611cae818461260e565b82612d01565b611c62565b91509350611cc78483612f97565b5f5280602052611cb463ffffffff60405f205416805f5282602052611ca463ffffffff60405f2054169250611c95565b5f848152602087815260408083205490911c63ffffffff168083529120549093919060601c60011615611d4457505090611c50611d349286612667565b611d3e818461260e565b91611c62565b9095939250815f528360205263ffffffff60405f205460201c1614611d82575b90611d72611cb49284612667565b611d7c818461260e565b82612f97565b93505082611d908183612d01565b5f5280602052611cb463ffffffff60405f205416805f5282602052611d7263ffffffff60405f205416925050611d64565b5050906117969063ffffffff6007541690612667565b8091105f14611e16575f526006602052611e118360405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b611b84565b5f526006602052611e118360405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b9192505061179692611ec263ffffffff841691825f526006602052611e7560405f2091825460681c600f0b611a4f565b7fffffff00000000000000000000000000000000ffffffffffffffffffffffffff82549160681b7cffffffffffffffffffffffffffffffff00000000000000000000000000169116179055565b5f526006602052611ede600160405f2001918254600f0b611a4f565b6001600160801b0319825416906001600160801b031617905560066125d6565b5081600f0b15611aa1565b606460405162461bcd60e51b815260206004820152600e60248201527f6b657920302072657365727665640000000000000000000000000000000000006044820152fd5b90611f5f6001600160801b0391611933565b168015611f7e57611f74611124924290611835565b9060085491612971565b50505f90565b611f8d81612a0e565b919061152c576111249150612a54565b5f5c611796575f5c60018101809111610789575f5d611fba61195f565b905f5b825181101561205657806001600160a01b03611fdb6001938661117a565b5116611fe681612ac0565b90805f52600b6020526001600160801b0360405f205416806001600160801b03841611612017575b50505001611fbd565b61202461202a918461112c565b82612b07565b5f52600b6020526001600160801b0360405f2091166001600160801b03198254161790555f808061200e565b509050565b6001600160a01b03811691825f527f000000000000000000000000000000000000000000000000000000000000000060205260405f2091825c5f5c14612177576120ac6120a661195f565b91611933565b915f5b825181101561216c57807f6ee327661a8f88f9b02f7e056d0b6bf6e3a4f6b203d1a007d1bc3e04114a682560406001600160a01b036120f06001958861117a565b511661210d816001600160a01b03165f52600a60205260405f2090565b8a5f5260028101602052825f20908682016001600160801b038061213e8d82611356818754169288548a5491612aa3565b808210818318021816166001600160801b03198254161790555490558151908a82526020820152a1016120af565b50935050505f5c905d565b50915050565b6001600160801b0383169182156113695783926121d4916001600160a01b038416805f52600560205260405f206001600160801b036121bf8882845416612ae7565b166001600160801b03198254161790556131fd565b6121dd81612a0e565b906121e9575b50505090565b6121fc926121f69161112c565b90612bb2565b805f806121e3565b60075463ffffffff165f805b63ffffffff8316928315612309578363ffffffff8616105f146122565763ffffffff91929350165f52600660205263ffffffff60405f205460201c16925b929190612210565b506122a86122ed91845f52600660205263ffffffff60405f205460201c165f5260066020526122a2600160405f20015460801d865f52600660205260405f205460681c600f0b90611a4f565b90611a4f565b91835f52600660205263ffffffff60405f205460201c165f5260066020526122a2600260405f200154600f0b855f526006602052600160405f200154600f0b90611a4f565b915f52600660205263ffffffff60405f205460401c169261224e565b509391509150565b9192906123408430857f00000000000000000000000000000000000000000000000000000000000000006119b0565b6001600160a01b0381169283156117f65761235d8360025461114c565b600255835f525f60205260405f20838154019055835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798576001600160a01b036040917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d793856124b0575b5082519487865260208601521692a36001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016803b15610222576040517fb8bc81dd0000000000000000000000000000000000000000000000000000000081527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316600482015260248101929092523060448301525f908290606490829084905af180156124a55761249b5750565b5f611796916110d3565b6040513d5f823e3d90fd5b6124d5906124bc611f9d565b6124c58161205b565b6001600160801b0387169061331a565b5f6123de565b905f602091828151910182855af1156124a5575f513d61253f57506001600160a01b0381163b155b61250a5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415612503565b919063ffffffff600184015416915f5b63ffffffff84169081156125cb57508363ffffffff84168281101561259d575063ffffffff9150165f528360205263ffffffff60405f205460201c16915b9192612558565b8210156125bf57505f528360205263ffffffff60405f205460401c1691612596565b94505091505060019190565b9450509150505f9190565b905b63ffffffff81166125e7575050565b806125f763ffffffff9284612bf9565b165f528060205263ffffffff60405f2054166125d8565b9063ffffffff8116156126635763ffffffff165f5260205261179660405f20600160ff825460601c16176cff00000000000000000000000082549160601b16906cff0000000000000000000000001916179055565b5050565b9063ffffffff8116156126635763ffffffff165f9081526020919091526040902080546cff0000000000000000000000001981166cfe000000000000000000000000909116179055565b91936001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001694853b15610222576040517fc40928d50000000000000000000000000000000000000000000000000000000081527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166004820152602481018690523060448201525f9687908290606490829084905af180156124a5576128c5575b506001600160a01b038116956001600160a01b03851694838887036128b4575b505086156128a157868152806020526040812054838110612886578390888352826020520360408220558260025403600255867fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36001600160801b038211611798577ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db92826001600160a01b039260409461285b575b5061284c87837f00000000000000000000000000000000000000000000000000000000000000006131fd565b835196875260208701521693a4565b61288090612867611f9d565b6128708161205b565b6001600160801b0383169061324d565b5f612820565b90836064928963391434e360e21b8452600452602452604452fd5b80634b637e8f60e11b6024925280600452fd5b6128be91846115ff565b5f83612781565b6128d29196505f906110d3565b5f945f612761565b81156128e4570490565b634e487b7160e01b5f52601260045260245ffd5b818102915f915f198282099284808510940393808503941461296757837001000000000000000000000000000000001115612955575090700100000000000000000000000000000000910990828211900360801b910360801c1790565b634e487b71905260116020526024601cfd5b5050505060801c90565b91818302915f1981850993838086109503948086039514612a0157848311156129e95790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061112492506128da565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c6540060205260405f205c60018160ff1c1461128f57505f905f90565b611124906001600160a01b03612a6a4283611894565b91165f5260056020526001600160801b0360405f2054169061112c565b8015611f7e576001600160801b03196111249260801b166128da565b6001600160801b03612ab9819461135d946111c5565b91166128f8565b612ac981612a0e565b90612ae25750611124612adb82612a54565b8092612bb2565b905090565b906001600160801b03809116911601906001600160801b03821161078957565b6001600160801b038216908115612bad577fc1d32ad5cca423e7dda2123dbf8c482f8e77d00b631c06e903a47f2cec1334df916001600160a01b036020921693845f52600a835260405f2060085480155f14612b915750612b7760016001600160801b0392019282845416612ae7565b166001600160801b03198254161790555b604051908152a2565b612ba69192612b9f91612a87565b825461114c565b9055612b88565b505050565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c654006020526001600160801b0360405f209116600160ff1b17905d565b9063ffffffff8116156126635763ffffffff165f52806020526002612ce360405f2092612c70845463ffffffff808260201c16165f528260205263ffffffff80612c53600160405f20015460801d8460681c600f0b611a4f565b9260401c16165f5282602052600160405f20015460801d90611a4f565b612c99600186019182906001600160801b036001600160801b031983549260801b169116179055565b54600f0b9063ffffffff80612cc887549482808760201c16165f52846020528760405f200154600f0b90611a4f565b9360401c16165f526020528260405f200154600f0b90611a4f565b9101906001600160801b0319825416906001600160801b0316179055565b63ffffffff82165f528060205263ffffffff60405f205460201c16908115612f5357612e4e6117969363ffffffff84165f5282602052612d7b63ffffffff60405f205460401c1663ffffffff83165f528460205260405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff60405f205460401c16612f14575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff1916928616929092179091559190525416612e535760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff81165f528260205260405f2063ffffffff851663ffffffff1982541617905582612bf9565b612bf9565b63ffffffff8181165f8181526020869052604080822054841682529081902054901c90911603612eca5763ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b612def565b63ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff8060405f205460401c16165f528260205260405f2063ffffffff821663ffffffff19825416179055612d9b565b606460405162461bcd60e51b815260206004820152601160248201527f726f7461746520522077697468206e696c0000000000000000000000000000006044820152fd5b63ffffffff82165f528060205263ffffffff60405f205460401c169081156131b957612e4e6117969363ffffffff84165f528260205261300f63ffffffff60405f205460201c1663ffffffff83165f528460205260405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff60405f205460201c1661317a575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff19169286169290921790915591905254166130ba5760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff8181165f81815260208681526040808320548516835290912054901c909116036131325763ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b613083565b63ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff8060405f205460201c16165f528260205260405f2063ffffffff821663ffffffff1982541617905561302f565b606460405162461bcd60e51b815260206004820152601160248201527f726f74617465204c2077697468206e696c0000000000000000000000000000006044820152fd5b611796926001600160a01b03604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252611a0a6064836110d3565b6001600160801b038216908115612bad577f6e61fe88e0a1a236f4b1dd39cabf2d411208b9a49196f476024ea24e64ad1b879160ff6001600160a01b036020931694855f52600984526132f66132b460405f20926001600160801b03845460081c1661112c565b82547fffffffffffffffffffffffffffffff00000000000000000000000000000000ff1660089190911b70ffffffffffffffffffffffffffffffff0016178255565b54161561330657604051908152a2565b613312816008546111c5565b600855612b88565b6001600160801b038216908115612bad577ff9fc07ce486e40b9eed23e2216095abadba614696a4d573ffef1fd6c43de84839160ff6001600160a01b036020931694855f52600984526133816132b460405f20926001600160801b03845460081c16612ae7565b54161561339157604051908152a2565b6133128160085461114c56000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a70000000000000000000000005555555555555555555555555555555555555555
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f3560e01c90816301e1d114146110295750806306aba0e11461100c57806306fdde0314610f5157806307a2d13a14610226578063095ea7b314610e775780630a28a4771461063057806312d64cd314610e5257806314b40f6114610e2657806318160ddd14610e0957806320ae905b14610cfc578063220f26a414610cbb57806323b872dd14610c83578063313ce56714610c3c57806338d52e0f14610bf95780633c77882e14610bd2578063402d267d146104e357806346c96aac14610b8f57806348aed0ba14610b2a5780634cdad5061461022657806359f1930814610ac25780636e553f6514610a4257806370a08231146102b357806390901bbc14610a1b57806394bf804d1461099b57806395d89b4114610897578063a6f19c8414610854578063a9059cbb14610823578063ac6c5251146107ef578063ae2a3be31461064d578063b3d7f6b914610630578063b460af94146105aa578063ba08765214610506578063c63d75b6146104e3578063c6e6f59214610226578063ce96cb77146102b3578063d657c9e7146102e8578063d905777e146102b3578063dcb9b6b91461027f578063dd62ed3e1461022b578063ef8b30f7146102265763f7c618c1146101df575f80fd5b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000005555555555555555555555555555555555555555168152f35b5f80fd5b610630565b346102225760403660031901126102225761024461106d565b6001600160a01b03610254611083565b91165f5260016020526001600160a01b0360405f2091165f52602052602060405f2054604051908152f35b346102225760403660031901126102225760206102ab61029d61106d565b6102a5611083565b90611f4d565b604051908152f35b346102225760203660031901126102225760206102ab6102d161106d565b6001600160a01b03165f525f60205260405f205490565b346102225760203660031901126102225761030161106d565b610309611371565b61031161195f565b8051916103366103208461121e565b9361032e60405195866110d3565b80855261121e565b602084019290601f19013684376001600160a01b038216915f5b825181101561047357806103996001600160a01b036103716001948761117a565b511684610391336001600160a01b0361038a878b61117a565b51166113e5565b913390611456565b6001600160801b036103ab838a61117a565b911690526103cc336001600160a01b036103c5848861117a565b5116611236565b9061042f575b50846001600160a01b036103e6838761117a565b51166001600160801b036103fa848b61117a565b5116906040519182527fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c360860203393a401610350565b61046d906104656001600160a01b03610448858961117a565b5116916001600160801b0361045d868d61117a565b51169061112c565b9033906115a5565b876103d2565b84865f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051918291602083019060208452518091526040830191905f5b8181106104c1575050500390f35b82516001600160801b03168452859450602093840193909201916001016104b3565b346102225760203660031901126102225760206102ab61050161106d565b6111d2565b346102225761051436611099565b919061051e611371565b6001600160a01b038316805f525f60205260405f2054908184116105775760208461054c81808988336126b1565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b83907fb94abeec000000000000000000000000000000000000000000000000000000005f5260045260245260445260645ffd5b34610222576105b836611099565b91906105c2611371565b6105dd836001600160a01b03165f525f60205260405f205490565b8083116105f45750818060209461054c93336126b1565b826001600160a01b03857ffe9cceec000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b346102225760203660031901126102225760206040516004358152f35b34610222576060366003190112610222576004356001600160801b0381168091036102225760243563ffffffff811691828203610222576044359163ffffffff831690818403610222579360014201908142116107895781116107e1575b5063ffffffff84168181101561079d5780820363ffffffff81116107895763ffffffff1683026001600160801b038116908103610789577f7779080f097bd53cad76bd3714ede1859eb34faa343baa401fda4f501ba2a37195606095610731610776936001600160a01b0361072661072161195f565b611159565b5116309033906119b0565b61073a86611a0f565b9061077161074b86600f0b8461118e565b610754846111a5565b9361076b610761826111a5565b8a600f0b9061118e565b95611a87565b611a87565b60405192835260208301526040820152a1005b634e487b7160e01b5f52601160045260245ffd5b606460405162461bcd60e51b815260206004820152601260248201527f496e76616c69642074696d652072616e676500000000000000000000000000006044820152fd5b63ffffffff169350846106ab565b3461022257602036600319011261022257602061081261080d61106d565b611933565b6001600160801b0360405191168152f35b346102225760403660031901126102225761084961083f61106d565b60243590336116c1565b602060405160018152f35b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a7168152f35b34610222575f366003190112610222576040515f6004548060011c90600181168015610991575b60208310811461097d5782855290811561095957506001146108fb575b6108f7836108eb818503826110d3565b60405191829182611043565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061093f575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610927565b60ff191660208086019190915291151560051b840190910191506108eb90506108db565b634e487b7160e01b5f52602260045260245ffd5b91607f16916108be565b34610222576040366003190112610222576004356109b7611083565b906109c0611371565b6109c9826111d2565b8082116109df575061054c818060209433612311565b916001600160a01b03907f284ff667000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610812610a3961106d565b60243590611894565b3461022257604036600319011261022257600435610a5e611083565b90610a67611371565b610a70826111d2565b808211610a86575061054c818060209433612311565b916001600160a01b03907f79012fb2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610af6610ae061106d565b610ae8611083565b90610af1611371565b6113e5565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d6001600160801b0360405191168152f35b34610222575f36600319011261022257610b4261195f565b6040518091602082016020835281518091526020604084019201905f5b818110610b6d575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610b5f565b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1168152f35b346102225760403660031901126102225760206102ab610bf061106d565b60243590611835565b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab300168152f35b34610222575f3660031901126102225760ff7f00000000000000000000000000000000000000000000000000000000000000121660ff811161078957602090604051908152f35b3461022257606036600319011261022257610849610c9f61106d565b610ca7611083565b60443591610cb68333836115ff565b6116c1565b34610222576020366003190112610222576001600160a01b03610cdc61106d565b165f52600560205260206001600160801b0360405f205416604051908152f35b3461022257606036600319011261022257610d1561106d565b610d1d611083565b604435916001600160801b03831680930361022257610d656001600160801b03602094610d48611371565b81610d5333866113e5565b16818082109118021816833384611456565b9081610d713383611236565b90610dee575b50506001600160a01b036001600160801b0360405193169384845216917fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c3608856001600160a01b0333941692a45f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b610e0291610dfb9161112c565b33836115a5565b8185610d77565b34610222575f366003190112610222576020600254604051908152f35b34610222576040366003190112610222576020610812610e4461106d565b610e4c611083565b90611109565b346102225760203660031901126102225760206102ab610e7061106d565b4290611835565b3461022257604036600319011261022257610e9061106d565b602435903315610f25576001600160a01b0316908115610ef957335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b7f94280d62000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b7fe602df05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b34610222575f366003190112610222576040515f6003548060011c90600181168015611002575b60208310811461097d578285529081156109595750600114610fa4576108f7836108eb818503826110d3565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610fe8575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610fd0565b91607f1691610f78565b34610222575f366003190112610222576020600854604051908152f35b34610222575f366003190112610222576020906002548152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361022257565b602435906001600160a01b038216820361022257565b606090600319011261022257600435906024356001600160a01b038116810361022257906044356001600160a01b03811681036102225790565b90601f8019910116810190811067ffffffffffffffff8211176110f557604052565b634e487b7160e01b5f52604160045260245ffd5b906111148183611236565b929061112757611124925061129f565b90565b505090565b906001600160801b03809116911603906001600160801b03821161078957565b9190820180921161078957565b8051156111665760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111665760209160051b010190565b90600f0b90600f0b029081600f0b91820361078957565b600f0b6f7fffffffffffffffffffffffffffffff198114610789575f0390565b9190820391821161078957565b6001600160a01b0316805f525f6020526001600160801b0360405f205411611219575f525f60205260405f20546001600160801b03036001600160801b0381116107895790565b505f90565b67ffffffffffffffff81116110f55760051b60200190565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f5260205260405f205c60018160ff1c1461128f57505f905f90565b906001600160801b036001921690565b6112a881611f84565b916001600160a01b0382165f52600b6020526001600160801b0360405f20541692836001600160801b03821611156113695761135661135d9361133e6113126112fa6001600160801b0398899661112c565b926001600160a01b03165f52600a60205260405f2090565b916001600160a01b0386165f526002830160205261133860405f20935491600854612a87565b9061114c565b61134e8460018401541695611933565b915491612aa3565b169061114c565b80821081831802181690565b505050505f90565b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6113bd5760017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b6113ef8282611236565b90611450575061112490611401611f9d565b61140a8361205b565b6002611427826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f526020526001600160801b03600160405f200154169283916115a5565b91505090565b9161152c92611463611f9d565b61146c8361205b565b6002611489826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f52602052600160405f20016001600160801b03815416956001600160801b0387811088821802881816806001600160801b03831611155f1461159b57509586945b6001600160801b038616928684611530575b50505050506001600160a01b0381165f52600b60205260405f206001600160801b03611517858284541661112c565b166001600160801b031982541617905561217d565b5090565b61154a6001600160801b03916001600160a01b039561112c565b166001600160801b031982541617905560405192835216907f1314fd112a381beea61539dbd21ec04afcff2662ac7d1b83273aade1f53d1b9760206001600160a01b03851692a35f808080866114e8565b90509586946114d6565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f526020526001600160801b0360405f209116600160ff1b17905d565b6001600160a01b03909291921691825f52600160205260405f206001600160a01b0382165f5260205260405f2054925f19841061163d575b50505050565b828410611684578015610f25576001600160a01b03821615610ef9575f5260016020526001600160a01b0360405f2091165f5260205260405f20910390555f808080611637565b506001600160a01b0383917ffb8f41b2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b906001600160a01b0382168015611822576001600160a01b0382169081156117f657805f525f60205260405f20548581106117dc578590825f525f6020520360405f2055815f525f60205260405f208581540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798578261175857505050565b6117806001600160801b0361179694168093611772611f9d565b61177b8161205b565b61324d565b611788611f9d565b6117918161205b565b61331a565b565b606460405162461bcd60e51b815260206004820152600f60248201527f76616c756520746f6f206c6172676500000000000000000000000000000000006044820152fd5b859163391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b038061184961072161195f565b51169116036112195763ffffffff8111611889575b63ffffffff61186d9116612204565b505f81600f0b13156112195760801b6001600160801b03191690565b5063ffffffff61185e565b6001600160a01b03806118a861072161195f565b51169116036112195763ffffffff8111611928575b6118cc63ffffffff8216612204565b90600f0b82810292600160ff1b81145f83121661078957818405149015171561078957600f0b905f82820392128183128116918313901516176107895761191290611a0f565b5f81600f0b12611219576001600160801b031690565b5063ffffffff6118bd565b6001600160a01b03165f52600960205260405f205460ff81166112195760081c6001600160801b031690565b6040519061196e6040836110d3565b600182526020368184013761198282611159565b6001600160a01b037f0000000000000000000000005555555555555555555555555555555555555555169052565b9091926001600160a01b036117969481604051957f23b872dd000000000000000000000000000000000000000000000000000000006020880152166024860152166044840152606483015260648252611a0a6084836110d3565b6124db565b9081600f0b91808303611a1f5750565b7f327269a7000000000000000000000000000000000000000000000000000000005f52608060045260245260445ffd5b90600f0b90600f0b01906f7fffffffffffffffffffffffffffffff1982126f7fffffffffffffffffffffffffffffff83131761078957565b909163ffffffff82168015611f095783600f0b1580611efe575b61163757611ab0836006612548565b9290611e45575f82815260066020526040902080547fffffff00000000000000000000000000000000ffffffffffffffffff000000001663ffffffff8516177cffffffffffffffffffffffffffffffff00000000000000000000000000606888901b161781559394611b8b94600291611b429060801b6001600160801b0319166001600160801b038516176001830155565b01906001600160801b0319825416906001600160801b0316179055611b6884600661260e565b63ffffffff821680611dd7575063ffffffff1960075416176007555b60066125d6565b906006915b63ffffffff811690815f528360205263ffffffff8060405f205416165f5283602052600160405f205460601c1615611dc157815f528360205263ffffffff60405f205416805f528460205263ffffffff60405f20541692835f528560205263ffffffff60405f205460201c1682145f14611cf7575063ffffffff83165f528460205263ffffffff60405f205460401c169163ffffffff83165f5285602052600160405f205460601c1615155f14611c68575090611c50611c569286612667565b84612667565b611c60818461260e565b915b91611b90565b9492915063ffffffff8116805f528360205263ffffffff60405f205460401c1663ffffffff871614611cb9575b5090611ca4611cb49284612667565b611cae818461260e565b82612d01565b611c62565b91509350611cc78483612f97565b5f5280602052611cb463ffffffff60405f205416805f5282602052611ca463ffffffff60405f2054169250611c95565b5f848152602087815260408083205490911c63ffffffff168083529120549093919060601c60011615611d4457505090611c50611d349286612667565b611d3e818461260e565b91611c62565b9095939250815f528360205263ffffffff60405f205460201c1614611d82575b90611d72611cb49284612667565b611d7c818461260e565b82612f97565b93505082611d908183612d01565b5f5280602052611cb463ffffffff60405f205416805f5282602052611d7263ffffffff60405f205416925050611d64565b5050906117969063ffffffff6007541690612667565b8091105f14611e16575f526006602052611e118360405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b611b84565b5f526006602052611e118360405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b9192505061179692611ec263ffffffff841691825f526006602052611e7560405f2091825460681c600f0b611a4f565b7fffffff00000000000000000000000000000000ffffffffffffffffffffffffff82549160681b7cffffffffffffffffffffffffffffffff00000000000000000000000000169116179055565b5f526006602052611ede600160405f2001918254600f0b611a4f565b6001600160801b0319825416906001600160801b031617905560066125d6565b5081600f0b15611aa1565b606460405162461bcd60e51b815260206004820152600e60248201527f6b657920302072657365727665640000000000000000000000000000000000006044820152fd5b90611f5f6001600160801b0391611933565b168015611f7e57611f74611124924290611835565b9060085491612971565b50505f90565b611f8d81612a0e565b919061152c576111249150612a54565b5f5c611796575f5c60018101809111610789575f5d611fba61195f565b905f5b825181101561205657806001600160a01b03611fdb6001938661117a565b5116611fe681612ac0565b90805f52600b6020526001600160801b0360405f205416806001600160801b03841611612017575b50505001611fbd565b61202461202a918461112c565b82612b07565b5f52600b6020526001600160801b0360405f2091166001600160801b03198254161790555f808061200e565b509050565b6001600160a01b03811691825f527fbb8471eadcf4ad67b38eb641c8fc0f6191bd9198c54d548851c2c98d5314b10060205260405f2091825c5f5c14612177576120ac6120a661195f565b91611933565b915f5b825181101561216c57807f6ee327661a8f88f9b02f7e056d0b6bf6e3a4f6b203d1a007d1bc3e04114a682560406001600160a01b036120f06001958861117a565b511661210d816001600160a01b03165f52600a60205260405f2090565b8a5f5260028101602052825f20908682016001600160801b038061213e8d82611356818754169288548a5491612aa3565b808210818318021816166001600160801b03198254161790555490558151908a82526020820152a1016120af565b50935050505f5c905d565b50915050565b6001600160801b0383169182156113695783926121d4916001600160a01b038416805f52600560205260405f206001600160801b036121bf8882845416612ae7565b166001600160801b03198254161790556131fd565b6121dd81612a0e565b906121e9575b50505090565b6121fc926121f69161112c565b90612bb2565b805f806121e3565b60075463ffffffff165f805b63ffffffff8316928315612309578363ffffffff8616105f146122565763ffffffff91929350165f52600660205263ffffffff60405f205460201c16925b929190612210565b506122a86122ed91845f52600660205263ffffffff60405f205460201c165f5260066020526122a2600160405f20015460801d865f52600660205260405f205460681c600f0b90611a4f565b90611a4f565b91835f52600660205263ffffffff60405f205460201c165f5260066020526122a2600260405f200154600f0b855f526006602052600160405f200154600f0b90611a4f565b915f52600660205263ffffffff60405f205460401c169261224e565b509391509150565b9192906123408430857f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab3006119b0565b6001600160a01b0381169283156117f65761235d8360025461114c565b600255835f525f60205260405f20838154019055835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798576001600160a01b036040917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d793856124b0575b5082519487865260208601521692a36001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a116803b15610222576040517fb8bc81dd0000000000000000000000000000000000000000000000000000000081527f000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a76001600160a01b0316600482015260248101929092523060448301525f908290606490829084905af180156124a55761249b5750565b5f611796916110d3565b6040513d5f823e3d90fd5b6124d5906124bc611f9d565b6124c58161205b565b6001600160801b0387169061331a565b5f6123de565b905f602091828151910182855af1156124a5575f513d61253f57506001600160a01b0381163b155b61250a5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415612503565b919063ffffffff600184015416915f5b63ffffffff84169081156125cb57508363ffffffff84168281101561259d575063ffffffff9150165f528360205263ffffffff60405f205460201c16915b9192612558565b8210156125bf57505f528360205263ffffffff60405f205460401c1691612596565b94505091505060019190565b9450509150505f9190565b905b63ffffffff81166125e7575050565b806125f763ffffffff9284612bf9565b165f528060205263ffffffff60405f2054166125d8565b9063ffffffff8116156126635763ffffffff165f5260205261179660405f20600160ff825460601c16176cff00000000000000000000000082549160601b16906cff0000000000000000000000001916179055565b5050565b9063ffffffff8116156126635763ffffffff165f9081526020919091526040902080546cff0000000000000000000000001981166cfe000000000000000000000000909116179055565b91936001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a11694853b15610222576040517fc40928d50000000000000000000000000000000000000000000000000000000081527f000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a76001600160a01b03166004820152602481018690523060448201525f9687908290606490829084905af180156124a5576128c5575b506001600160a01b038116956001600160a01b03851694838887036128b4575b505086156128a157868152806020526040812054838110612886578390888352826020520360408220558260025403600255867fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36001600160801b038211611798577ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db92826001600160a01b039260409461285b575b5061284c87837f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab3006131fd565b835196875260208701521693a4565b61288090612867611f9d565b6128708161205b565b6001600160801b0383169061324d565b5f612820565b90836064928963391434e360e21b8452600452602452604452fd5b80634b637e8f60e11b6024925280600452fd5b6128be91846115ff565b5f83612781565b6128d29196505f906110d3565b5f945f612761565b81156128e4570490565b634e487b7160e01b5f52601260045260245ffd5b818102915f915f198282099284808510940393808503941461296757837001000000000000000000000000000000001115612955575090700100000000000000000000000000000000910990828211900360801b910360801c1790565b634e487b71905260116020526024601cfd5b5050505060801c90565b91818302915f1981850993838086109503948086039514612a0157848311156129e95790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061112492506128da565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c6540060205260405f205c60018160ff1c1461128f57505f905f90565b611124906001600160a01b03612a6a4283611894565b91165f5260056020526001600160801b0360405f2054169061112c565b8015611f7e576001600160801b03196111249260801b166128da565b6001600160801b03612ab9819461135d946111c5565b91166128f8565b612ac981612a0e565b90612ae25750611124612adb82612a54565b8092612bb2565b905090565b906001600160801b03809116911601906001600160801b03821161078957565b6001600160801b038216908115612bad577fc1d32ad5cca423e7dda2123dbf8c482f8e77d00b631c06e903a47f2cec1334df916001600160a01b036020921693845f52600a835260405f2060085480155f14612b915750612b7760016001600160801b0392019282845416612ae7565b166001600160801b03198254161790555b604051908152a2565b612ba69192612b9f91612a87565b825461114c565b9055612b88565b505050565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c654006020526001600160801b0360405f209116600160ff1b17905d565b9063ffffffff8116156126635763ffffffff165f52806020526002612ce360405f2092612c70845463ffffffff808260201c16165f528260205263ffffffff80612c53600160405f20015460801d8460681c600f0b611a4f565b9260401c16165f5282602052600160405f20015460801d90611a4f565b612c99600186019182906001600160801b036001600160801b031983549260801b169116179055565b54600f0b9063ffffffff80612cc887549482808760201c16165f52846020528760405f200154600f0b90611a4f565b9360401c16165f526020528260405f200154600f0b90611a4f565b9101906001600160801b0319825416906001600160801b0316179055565b63ffffffff82165f528060205263ffffffff60405f205460201c16908115612f5357612e4e6117969363ffffffff84165f5282602052612d7b63ffffffff60405f205460401c1663ffffffff83165f528460205260405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff60405f205460401c16612f14575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff1916928616929092179091559190525416612e535760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff81165f528260205260405f2063ffffffff851663ffffffff1982541617905582612bf9565b612bf9565b63ffffffff8181165f8181526020869052604080822054841682529081902054901c90911603612eca5763ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b612def565b63ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff8060405f205460401c16165f528260205260405f2063ffffffff821663ffffffff19825416179055612d9b565b606460405162461bcd60e51b815260206004820152601160248201527f726f7461746520522077697468206e696c0000000000000000000000000000006044820152fd5b63ffffffff82165f528060205263ffffffff60405f205460401c169081156131b957612e4e6117969363ffffffff84165f528260205261300f63ffffffff60405f205460201c1663ffffffff83165f528460205260405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff60405f205460201c1661317a575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff19169286169290921790915591905254166130ba5760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff8181165f81815260208681526040808320548516835290912054901c909116036131325763ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b613083565b63ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff8060405f205460201c16165f528260205260405f2063ffffffff821663ffffffff1982541617905561302f565b606460405162461bcd60e51b815260206004820152601160248201527f726f74617465204c2077697468206e696c0000000000000000000000000000006044820152fd5b611796926001600160a01b03604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252611a0a6064836110d3565b6001600160801b038216908115612bad577f6e61fe88e0a1a236f4b1dd39cabf2d411208b9a49196f476024ea24e64ad1b879160ff6001600160a01b036020931694855f52600984526132f66132b460405f20926001600160801b03845460081c1661112c565b82547fffffffffffffffffffffffffffffff00000000000000000000000000000000ff1660089190911b70ffffffffffffffffffffffffffffffff0016178255565b54161561330657604051908152a2565b613312816008546111c5565b600855612b88565b6001600160801b038216908115612bad577ff9fc07ce486e40b9eed23e2216095abadba614696a4d573ffef1fd6c43de84839160ff6001600160a01b036020931694855f52600984526133816132b460405f20926001600160801b03845460081c16612ae7565b54161561339157604051908152a2565b6133128160085461114c56
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a70000000000000000000000005555555555555555555555555555555555555555
-----Decoded View---------------
Arg [0] : voter_ (address): 0xD883a0B7889475d362CEA8fDf588266a3da554A1
Arg [1] : gauge_ (address): 0xEdEea93F7439f7bBe37a6Bc486184d51D4c215a7
Arg [2] : rewardToken_ (address): 0x5555555555555555555555555555555555555555
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1
Arg [1] : 000000000000000000000000edeea93f7439f7bbe37a6bc486184d51d4c215a7
Arg [2] : 0000000000000000000000005555555555555555555555555555555555555555
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.78
Net Worth in HYPE
Token Allocations
WHYPE
100.00%
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| HYPEREVM | 100.00% | $21.97 | 0.0356 | $0.7817 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.