HYPE Price: $22.63 (-2.43%)
 

Overview

HYPE Balance

HyperEVM LogoHyperEVM LogoHyperEVM Logo0 HYPE

HYPE Value

$0.00

Token Holdings

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Add Bribe193558892025-11-16 11:18:4670 days ago1763291926IN
0x5a8C1AD7...a176fe7a8
0 HYPE0.0064114624.73789373
Add Bribe187296422025-11-09 8:11:0077 days ago1762675860IN
0x5a8C1AD7...a176fe7a8
0 HYPE0.000030610.1251109

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
187296422025-11-09 8:11:0077 days ago1762675860  Contract Creation0 HYPE
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SegmentedElector

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 1000 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {SegmentedEmission} from "contracts/reward/SegmentedEmission.sol";
import {Elector} from "contracts/voting/Elector.sol";
import {IVoter} from "contracts/voting/interfaces/IVoter.sol";
import {TokenStreamConsumer} from "contracts/reward/TokenStreamConsumer.sol";
import {ERC20} from "openzeppelin-v5/token/ERC20/ERC20.sol";
import {IERC20Metadata} from "openzeppelin-v5/token/ERC20/extensions/IERC20Metadata.sol";

contract SegmentedElector is SegmentedEmission, Elector {
    address public immutable rewardToken;

    constructor(
        IVoter voter_,
        address gauge_,
        address rewardToken_
    ) 
        Elector(voter_, gauge_) 
        ERC20(
            string(abi.encodePacked("Voting Receipt for ", _getTokenSymbol(rewardToken_), " rewards")),
            string(abi.encodePacked("voted-", IERC20Metadata(voter_.ballot()).symbol()))
        )
    {
        rewardToken = rewardToken_;
    }

    function _getTokenSymbol(address token) private view returns (string memory) {
        try IERC20Metadata(token).symbol() returns (string memory symbol) {
            return symbol;
        } catch {
            return "UNKNOWN";
        }
    }

    function _inputTokens() internal virtual override(SegmentedEmission, TokenStreamConsumer) view returns (address[] memory tokens) {
        tokens = new address[](1);
        tokens[0] = rewardToken;
    }

    function _pendingInputAmountWithUpdateUncached(address token) internal virtual override returns (uint128) {
        // SegmentedEmission (via TokenStreamConsumerPure) doesn't update anything, 
        // just returns the current pending amount
        return _pendingInputAmountUncached(token);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {TokenStreamConsumerPure} from "./TokenStreamConsumerPure.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {SafeERC20} from "openzeppelin-v5/token/ERC20/utils/SafeERC20.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";
import {SafeCast} from "openzeppelin-v5/utils/math/SafeCast.sol";
import {PrefixSum} from "../lib/PrefixSum.sol";

abstract contract SegmentedEmission is TokenStreamConsumerPure {
    using SafeERC20 for IERC20;
    using SafeCast for *;
    using PrefixSum for PrefixSum.PrefixSumTree;

    PrefixSum.PrefixSumTree internal emissionTree;

    event BribeAdded(uint128 emissionRate, uint32 begin, uint32 end);

    function _inputTokens() internal virtual view override returns (address[] memory);

    function addBribe(uint128 emissionRate, uint32 begin, uint32 end) external {
        // Adjust begin if it's too early
        if (begin < block.timestamp + 1) {
            begin = uint32(block.timestamp + 1);
        }
        
        require(begin < end, "Invalid time range");
        
        // Calculate total amount based on emission rate and duration
        uint32 duration = end - begin;
        uint128 totalAmount = emissionRate * uint128(duration);
        
        IERC20(_inputTokens()[0]).safeTransferFrom(msg.sender, address(this), totalAmount);
        
        // Use the provided emission rate directly
        int128 emissionRateInt = int256(uint256(emissionRate)).toInt128();
        
        // For begin timestamp: val1 = emission rate, val2 = emission rate * begin
        int128 val1Begin = emissionRateInt;
        int128 val2Begin = emissionRateInt * int128(uint128(begin));
        
        // For end timestamp: val1 = -emission rate, val2 = - emission rate * end
        int128 val1End = -emissionRateInt;
        int128 val2End = -emissionRateInt * int128(uint128(end));
        
        // Add to PrefixSum tree
        emissionTree.add(begin, val1Begin, val2Begin);
        emissionTree.add(end, val1End, val2End);
        
        emit BribeAdded(emissionRate, begin, end);
    }

    function _totalEmissionAt(address token, uint256 t) internal view override returns (uint128) {
        if(_inputTokens()[0] != token) {return 0;}
        
        if (t > type(uint32).max) {
            t = type(uint32).max;
        }
        
        (int128 sum1, int128 sum2) = emissionTree.prefixSum(uint32(t));
        
        // Total emission at time t = sum1 * t - sum2
        int128 totalEmission = (int256(sum1) * int256(t) - int256(sum2)).toInt128();
        
        // Ensure non-negative result
        if (totalEmission < 0) {
            return 0;
        }
        
        return uint128(totalEmission);
    }

    function _emissionRateAt(address token, uint256 t) internal view override returns (uint256) {
        if(_inputTokens()[0] != token) {return 0;}
        
        if (t > type(uint32).max) {
            t = type(uint32).max;
        }
        
        (int128 sum1, ) = emissionTree.prefixSum(uint32(t));
        
        // Emission rate at time t = sum1
        if (sum1 <= 0) {
            return 0;
        }
        
        // Convert to X128 format (multiply by 2^128)
        return uint256(uint128(sum1)) << 128;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {ERC4626TokenStreamSplitter} from "contracts/reward/ERC4626TokenStreamSplitter.sol";
import {IVoter} from "contracts/voting/interfaces/IVoter.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";

abstract contract Elector is ERC4626TokenStreamSplitter {
    IVoter public immutable voter;
    address public immutable gauge;

    constructor(IVoter voter_, address gauge_) ERC4626TokenStreamSplitter(IERC20(voter_.ballot())) {
        IERC20(voter_.ballot()).approve(address(voter_), type(uint256).max);
        voter = voter_;
        gauge = gauge_;
    }

    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual override {
        super._deposit(caller, receiver, assets, shares);
        voter.vote(gauge, assets, address(this));
    }

    function _withdraw(address caller, address receiver, address owner, uint256 assets, uint256 shares) internal virtual override {
        voter.unvote(gauge, assets, address(this));
        super._withdraw(caller, receiver, owner, assets, shares);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import {ITokenStreamEmitter} from "contracts/reward/interfaces/ITokenStreamEmitter.sol";

interface IVoter is ITokenStreamEmitter {
    function ballot() external returns (address);
    function vote(address gauge, uint256 amount, address recipient) external;

    function unvote(address gauge, uint256 amount, address recipient) external;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";

abstract contract TokenStreamConsumer {
    using TransientSlot for bytes32;
    using TransientSlot for TransientSlot.Uint256Slot;
    using SlotDerivation for bytes32;

    bytes32 private constant pendingInputAmountCacheSlot = 0x9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c65400; // erc7201 "TokenStreamConsumer.pendingInputAmountCached"

    function readCache(address token) private view returns (bool, uint128) {
        TransientSlot.Uint256Slot slot = pendingInputAmountCacheSlot.deriveMapping(token).asUint256();
        uint256 cached = slot.tload();
        if (cached >> 255 == 1) return (true, uint128(cached));
        return (false, 0);
    }

    function writeCache(address token, uint128 value) private {
        pendingInputAmountCacheSlot.deriveMapping(token).asUint256().tstore(uint256(1 << 255) | value);
    }

    function _inputTokens() internal view virtual returns (address[] memory);

    function _takeInput(address token, address recipient, uint128 amountMax) internal returns (uint128) {
        if (amountMax == 0) return 0;
        uint128 amount = _takeInputRaw(token, recipient, amountMax);

        (bool cached, uint128 cache) = readCache(token);
        if (cached) writeCache(token, cache - amount);
        return amount;
    }

    function _pendingInputAmount(address token) internal view returns (uint128) {
        (bool cached, uint128 cache) = readCache(token);
        if (cached) return cache;

        return _pendingInputAmountUncached(token);
    }

    function _pendingInputAmountWithUpdate(address token) internal returns (uint128) {
        (bool cached, uint128 cache) = readCache(token);
        if (cached) return cache;

        uint128 fetched = _pendingInputAmountWithUpdateUncached(token);
        writeCache(token, fetched);
        return fetched;
    }

    function _takeInputRaw(address token, address recipient, uint128 amountMax) internal virtual returns (uint128);

    function _pendingInputAmountWithUpdateUncached(address token) internal virtual returns (uint128);

    function _pendingInputAmountUncached(address token) internal view virtual returns (uint128);

    function _tokenInputPerSecondX128(address token) internal view virtual returns (uint256);

    function tokenInputPerSecondX128(address token) external view returns (uint256) {
        return _tokenInputPerSecondX128(token);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {TokenStreamConsumer} from "./TokenStreamConsumer.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {SafeERC20} from "openzeppelin-v5/token/ERC20/utils/SafeERC20.sol";

abstract contract TokenStreamConsumerPure is TokenStreamConsumer {
    using SafeERC20 for IERC20;

    mapping(address => uint128) public totalEmitted;


    function _takeInputRaw(address token, address recipient, uint128 amountMax) internal virtual override returns (uint128) {
        totalEmitted[token] += amountMax;
        IERC20(token).safeTransfer(recipient, amountMax);
        return amountMax;
    }

    function _totalEmissionAt(address token, uint256 t) internal virtual view returns (uint128);


    function totalEmissionAt(address token, uint256 t) public view returns (uint128) {
        return _totalEmissionAt(token, t);
    }

    function _emissionRateAt(address token, uint256 t) internal virtual view returns (uint256);

    function emissionRateAt(address token, uint256 t) public virtual view returns (uint256) {
        return _emissionRateAt(token, t);
    }

    function _pendingInputAmountUncached(address token) internal view virtual override returns (uint128) {
        return _totalEmissionAt(token, block.timestamp) - totalEmitted[token];
    }

    function _tokenInputPerSecondX128(address token) internal view virtual override returns (uint256) {
        return _emissionRateAt(token, block.timestamp);
    }

}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 12 of 57 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
/// @title Prefix-sum over (timestamp,value1,value2) using an augmented Red–Black Tree
/// @notice Maintains two values keyed by timestamp (uint32) with O(log n) add/set and prefixSum.
/// @dev
///  - Keys must be > 0 (we use 0 as the NIL sentinel).
///  - Values and sums are signed (int128) so negative deltas are supported.
///  - Duplicate timestamps are coalesced into a single node (we store the aggregate values per key).
///  - Deletion is logical (set the values to 0); physical node removal is omitted for simplicity/gas.
///  - Iterative implementation (no recursion) to avoid stack-depth/gas issues.
pragma solidity ^0.8.19;

library PrefixSum {

    // ───────────────────────────────────────────────────────────────
    // Types & storage
    // ───────────────────────────────────────────────────────────────

    struct Node {
        uint32 parent; // key of parent
        uint32 left;   // key of left child
        uint32 right;  // key of right child
        uint8 flags;    // bit0: red(1)/black(0)
        int128 val1;    // first value at this key (can be negative)
        int128 val2;    // second value at this key (can be negative)
        int128 sum1;    // first subtree sum rooted at this node
        int128 sum2;    // second subtree sum rooted at this node
    }

    // NIL sentinel is key 0. nodes[0] is an implicit black leaf with sum1=0 and sum2=0.
    uint32 private constant NIL = 0;

    struct PrefixSumTree {
    mapping(uint32 => Node) nodes; // keyed by the timestamp itself
    uint32 root; // key of the root (0 if empty)
    }

    // ───────────────────────────────────────────────────────────────
    // Events
    // ───────────────────────────────────────────────────────────────
    event Add(uint32 indexed timestamp, int128 delta1, int128 delta2, int128 newValue1, int128 newValue2);

    // ───────────────────────────────────────────────────────────────
    // Public API
    // ───────────────────────────────────────────────────────────────

    /// @notice Add `delta1` and `delta2` to the two values stored at `timestamp`.
    function add(PrefixSumTree storage tree, uint32 key, int128 delta1, int128 delta2) internal {
        require(key != 0, "key 0 reserved");
        if (delta1 == 0 && delta2 == 0) return;

        (bool exists, uint32 p) = _find(tree, key);
        if (exists) {
            tree.nodes[p].val1 += delta1;
            tree.nodes[p].val2 += delta2;
            _pullUp(tree, p);
            return;
        }

        Node storage z = tree.nodes[key];
        z.parent = p;
        z.val1 = delta1;
        z.val2 = delta2;
        z.sum1 = delta1;
        z.sum2 = delta2;
        _setRed(tree, key, true);

        if (p == NIL) {
            tree.root = key;
        } else if (key < p) {
            tree.nodes[p].left = key;
        } else {
            tree.nodes[p].right = key;
        }

        // Update sums on the path to the root for the new values.
        _pullUp(tree, p);

        // Repair Red–Black properties.
        _insertFixup(tree, key);
    }

    /// @notice Sum of both values with key <= `t`.
    function prefixSum(PrefixSumTree storage tree, uint32 t) internal view returns (int128 s1, int128 s2) {
        uint32 x = tree.root;
        while (x != NIL) {
            if (t < x) {
                x = tree.nodes[x].left;
            } else {
                s1 += tree.nodes[tree.nodes[x].left].sum1 + tree.nodes[x].val1;
                s2 += tree.nodes[tree.nodes[x].left].sum2 + tree.nodes[x].val2;
                x = tree.nodes[x].right;
            }
        }
    }

    // ───────────────────────────────────────────────────────────────
    // Internal helpers — search, insert, rotations, fixups
    // ───────────────────────────────────────────────────────────────


    function _isRed(PrefixSumTree storage tree, uint32 k) internal view returns (bool) {
        return (tree.nodes[k].flags & 0x01) != 0; // bit0 set
    }

    function _setRed(PrefixSumTree storage tree, uint32 k, bool red) internal {
        if (k == NIL) return; // NIL is always black
        if (red) tree.nodes[k].flags |= 0x01; else tree.nodes[k].flags &= 0xFE;
    }

    /// @dev Standard BST search. Returns (true,key) if found; otherwise (false,lastVisitedKeyWhereToAttach).
    function _find(PrefixSumTree storage tree, uint32 key) internal view returns (bool, uint32) {
        uint32 x = tree.root;
        uint32 y = NIL;
        while (x != NIL) {
            y = x;
            if (key < x) {
                x = tree.nodes[x].left;
            } else if (key > x) {
                x = tree.nodes[x].right;
            } else {
                return (true, x);
            }
        }
        return (false, y);
    }

    function _pull(PrefixSumTree storage tree, uint32 x) internal {
        if (x == NIL) return;
        Node storage n = tree.nodes[x];
        n.sum1 = n.val1 + tree.nodes[n.left].sum1 + tree.nodes[n.right].sum1;
        n.sum2 = n.val2 + tree.nodes[n.left].sum2 + tree.nodes[n.right].sum2;
    }

    function _pullUp(PrefixSumTree storage tree, uint32 x) internal {
        while (x != NIL) {
            _pull(tree, x);
            x = tree.nodes[x].parent;
        }
    }

    function _leftRotate(PrefixSumTree storage tree, uint32 x) internal {
        uint32 y = tree.nodes[x].right;
        require(y != NIL, "rotate L with nil");
        // Turn y's left subtree into x's right subtree
        tree.nodes[x].right = tree.nodes[y].left;
        if (tree.nodes[y].left != NIL) tree.nodes[tree.nodes[y].left].parent = x;
        // Link y's parent to x's parent
        tree.nodes[y].parent = tree.nodes[x].parent;
        if (tree.nodes[x].parent == NIL) {
            tree.root = y;
        } else if (x == tree.nodes[tree.nodes[x].parent].left) {
            tree.nodes[tree.nodes[x].parent].left = y;
        } else {
            tree.nodes[tree.nodes[x].parent].right = y;
        }
        // Put x on y's left
        tree.nodes[y].left = x;
        tree.nodes[x].parent = y;

        // Update sums: pull(x) then pull(y)
        _pull(tree, x);
        _pull(tree, y);
    }

    function _rightRotate(PrefixSumTree storage tree, uint32 x) internal {
        uint32 y = tree.nodes[x].left;
        require(y != NIL, "rotate R with nil");
        // Turn y's right subtree into x's left subtree
        tree.nodes[x].left = tree.nodes[y].right;
        if (tree.nodes[y].right != NIL) tree.nodes[tree.nodes[y].right].parent = x;
        // Link y to x's parent
        tree.nodes[y].parent = tree.nodes[x].parent;
        if (tree.nodes[x].parent == NIL) {
            tree.root = y;
        } else if (x == tree.nodes[tree.nodes[x].parent].right) {
            tree.nodes[tree.nodes[x].parent].right = y;
        } else {
            tree.nodes[tree.nodes[x].parent].left = y;
        }
        // Put x on y's right
        tree.nodes[y].right = x;
        tree.nodes[x].parent = y;

        // Update sums: pull(x) then pull(y)
        _pull(tree, x);
        _pull(tree, y);
    }

    function _insertFixup(PrefixSumTree storage tree, uint32 z) internal {
        while (_isRed(tree, tree.nodes[z].parent)) {
            uint32 p = tree.nodes[z].parent;
            uint32 g = tree.nodes[p].parent; // grandparent is not NIL if parent is red
            if (p == tree.nodes[g].left) {
                uint32 y = tree.nodes[g].right; // uncle
                if (_isRed(tree, y)) {
                    // Case 1: uncle is red
                    _setRed(tree, p, false);
                    _setRed(tree, y, false);
                    _setRed(tree, g, true);
                    z = g;
                } else {
                    if (z == tree.nodes[p].right) {
                        // Case 2: triangle -> turn into line
                        z = p;
                        _leftRotate(tree, z);
                        p = tree.nodes[z].parent; // after rotation, update p and g
                        g = tree.nodes[p].parent;
                    }
                    // Case 3: line -> single rotate
                    _setRed(tree, p, false);
                    _setRed(tree, g, true);
                    _rightRotate(tree, g);
                }
            } else {
                // mirror cases
                uint32 y = tree.nodes[g].left; // uncle
                if (_isRed(tree, y)) {
                    _setRed(tree, p, false);
                    _setRed(tree, y, false);
                    _setRed(tree, g, true);
                    z = g;
                } else {
                    if (z == tree.nodes[p].left) {
                        z = p;
                        _rightRotate(tree, z);
                        p = tree.nodes[z].parent;
                        g = tree.nodes[p].parent;
                    }
                    _setRed(tree, p, false);
                    _setRed(tree, g, true);
                    _leftRotate(tree, g);
                }
            }
        }
        _setRed(tree, tree.root, false); // root must be black
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {TokenStreamSplitter} from "./TokenStreamSplitter.sol";
import {IERC4626TokenStreamSplitter} from "contracts/reward/interfaces/IERC4626TokenStreamSplitter.sol";

import {Test} from "forge-std/Test.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {ERC4626} from "openzeppelin-v5/token/ERC20/extensions/ERC4626.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";

abstract contract ERC4626TokenStreamSplitter is ERC4626, TokenStreamSplitter {
    constructor(IERC20 asset) ERC4626(asset) {}

    function totalAssets() public view virtual override returns (uint256) {
        return _convertToAssets(totalSupply(), Math.Rounding.Floor);
    }

    function _convertToShares(uint256 assets, Math.Rounding) internal view virtual override returns (uint256) {
        return assets;
    }

    function _convertToAssets(uint256 shares, Math.Rounding) internal view virtual override returns (uint256) {
        return shares;
    }

    function maxDeposit(address a) public view override returns (uint256) {
        return _convertToAssets(maxMint(a), Math.Rounding.Floor);
    }

    function maxMint(address a) public view override returns (uint256) {
        if (!_whitelisted(a)) return 0;
        if (balanceOf(a) > type(uint128).max) return 0;
        return type(uint128).max - balanceOf(a);
    }

    function deposit(uint256 assets, address receiver) public virtual override nonReentrant returns (uint256) {
        return super.deposit(assets, receiver);
    }

    function mint(uint256 shares, address receiver) public virtual override nonReentrant returns (uint256) {
        return super.mint(shares, receiver);
    }

    function withdraw(uint256 assets, address receiver, address owner) public virtual override nonReentrant returns (uint256) {
        return super.withdraw(assets, receiver, owner);
    }

    function redeem(uint256 shares, address receiver, address owner) public virtual override nonReentrant returns (uint256) {
        return super.redeem(shares, receiver, owner);
    }

    function _update(address from, address to, uint256 value) internal override {
        super._update(from, to, value);
        require(value <= type(uint128).max, "value too large");
        if (value != 0) {
            if (from != address(0)) _decreaseWeight(from, uint128(value));
            if (to != address(0)) _increaseWeight(to, uint128(value));
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface ITokenStreamEmitter {
    event Collect(address indexed token, address indexed owner, address indexed recipient, uint128 amount);

    function outputTokens() external view returns (address[] memory);

    function collect(address token, address recipient, uint128 maxAmount) external returns (uint128);

    function collectAll(address recipient) external returns (uint128[] memory);

    function collectableAmount(address token, address account) external view returns (uint128);

    function tokenOutputPerSecondX128(address token, address account) external view returns (uint256);

    function collectableAmountWithUpdate(address token, address account) external returns (uint128);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.

pragma solidity ^0.8.24;

/**
 * @dev Library for reading and writing value-types to specific transient storage slots.
 *
 * Transient slots are often used to store temporary values that are removed after the current transaction.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 *  * Example reading and writing values using transient storage:
 * ```solidity
 * contract Lock {
 *     using TransientSlot for *;
 *
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
 *
 *     modifier locked() {
 *         require(!_LOCK_SLOT.asBoolean().tload());
 *
 *         _LOCK_SLOT.asBoolean().tstore(true);
 *         _;
 *         _LOCK_SLOT.asBoolean().tstore(false);
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library TransientSlot {
    /**
     * @dev UDVT that represent a slot holding a address.
     */
    type AddressSlot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a AddressSlot.
     */
    function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
        return AddressSlot.wrap(slot);
    }

    /**
     * @dev UDVT that represent a slot holding a bool.
     */
    type BooleanSlot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a BooleanSlot.
     */
    function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
        return BooleanSlot.wrap(slot);
    }

    /**
     * @dev UDVT that represent a slot holding a bytes32.
     */
    type Bytes32Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Bytes32Slot.
     */
    function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
        return Bytes32Slot.wrap(slot);
    }

    /**
     * @dev UDVT that represent a slot holding a uint256.
     */
    type Uint256Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Uint256Slot.
     */
    function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
        return Uint256Slot.wrap(slot);
    }

    /**
     * @dev UDVT that represent a slot holding a int256.
     */
    type Int256Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Int256Slot.
     */
    function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
        return Int256Slot.wrap(slot);
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(AddressSlot slot) internal view returns (address value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(AddressSlot slot, address value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(BooleanSlot slot) internal view returns (bool value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(BooleanSlot slot, bool value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Bytes32Slot slot, bytes32 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Uint256Slot slot) internal view returns (uint256 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Uint256Slot slot, uint256 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Int256Slot slot) internal view returns (int256 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Int256Slot slot, int256 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {StakingMath} from "contracts/lib/StakingMath.sol";
import {TokenStreamConsumer} from "contracts/reward/TokenStreamConsumer.sol";
import {TokenStreamEmitter} from "contracts/reward/TokenStreamEmitter.sol";
import {IRewardSource} from "contracts/reward/interfaces/IRewardSource.sol";
import {IERC20} from "openzeppelin-v5/token/ERC20/IERC20.sol";
import {Context} from "openzeppelin-v5/utils/Context.sol";
import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";

abstract contract TokenStreamSplitter is TokenStreamConsumer, TokenStreamEmitter {
    error ReceiverNotWhitelisted();

    using TransientSlot for bytes32;
    using TransientSlot for TransientSlot.Uint256Slot;
    using SlotDerivation for bytes32;
    using StakingMath for StakingMath.Ledger;

    StakingMath.Ledger private ledger;
    mapping(address => uint128) private lastSeenPendingInputAmounts;

    uint256 private transient distributeCount;
    bytes32 private immutable distributeCountAtLastPoke;

    constructor() {
        distributeCountAtLastPoke = SlotDerivation.erc7201Slot("TokenStreamEmitter.DCALP");
    }

    function _poke(address account) private {
        TransientSlot.Uint256Slot slot = distributeCountAtLastPoke.deriveMapping(account).asUint256();
        if (slot.tload() == distributeCount) return;
        ledger.poke(_inputTokens(), account);
        slot.tstore(distributeCount);
    }

    function _increaseWeight(address account, uint128 amount) internal {
        require(_whitelisted(account), ReceiverNotWhitelisted());
        _distribute();
        _poke(account);
        ledger.stake(account, amount);
    }

    function _decreaseWeight(address account, uint128 amount) internal {
        _distribute();
        _poke(account);
        ledger.unstake(account, amount);
    }

    function getWeight(address account) public view returns (uint128) {
        return ledger.effectiveStakes(account);
    }

    function getTotalWeight() public view returns (uint256) {
        return ledger.totalStakes;
    }

    function _outputTokens() internal view override returns (address[] memory) {
        return _inputTokens();
    }

    function _disable(address account) internal {
        _distribute();
        _poke(account);
        ledger.disable(account);
    }

    function _enable(address account) internal {
        _distribute();
        _poke(account);
        ledger.enable(account);
    }

    function _distribute() internal {
        if (!_shouldDistribute()) return;
        distributeCount += 1;
        address[] memory inputTokens = _inputTokens();
        for (uint256 i = 0; i < inputTokens.length; i++) {
            address token = inputTokens[i];
            uint128 pendingAmount = _pendingInputAmountWithUpdate(token);
            uint128 lastSeen = lastSeenPendingInputAmounts[token];
            if (pendingAmount > lastSeen) {
                ledger.distribute(token, pendingAmount - lastSeen);
                lastSeenPendingInputAmounts[token] = pendingAmount;
            }
        }
    }

    function _pendingOutputAmount(address token, address account) internal view override returns (uint128 amount) {
        uint128 pendingAmount = _pendingInputAmount(token);
        uint128 lastSeen = lastSeenPendingInputAmounts[token];
        if (pendingAmount <= lastSeen) return 0;
        return ledger.claimable(token, pendingAmount - lastSeen, account);
    }

    function _pendingOutputAmountWithUpdate(address token, address account) internal override returns (uint128 amount) {
        _distribute();
        _poke(account);
        return ledger.owed(token, account);
    }

    function _sendOutput(address token, address account, address recipient, uint128 maxAmount) internal override returns (uint128 amount) {
        _distribute();
        _poke(account);
        amount = ledger.collect(token, account, maxAmount);
        lastSeenPendingInputAmounts[token] -= amount;
        _takeInput(token, recipient, amount);
        return amount;
    }

    function _tokenOutputPerSecondX128(address token, address account) internal view override returns (uint256) {
        uint256 balance = ledger.effectiveStakes(account);
        if (balance == 0) return 0;
        return Math.mulDiv(_tokenInputPerSecondX128(token), balance, ledger.totalStakes);
    }

    function _shouldDistribute() internal view virtual returns (bool) {
        return distributeCount == 0;
    }

    function _whitelisted(address) internal view virtual returns (bool) {
        return true;
    }

    function _collectUndistributed(address token, address recipient) internal {
        _distribute();
        uint128 amt = ledger.collectUndistributed(token);
        if (amt > 0) {
            lastSeenPendingInputAmounts[token] -= amt;
            _takeInput(token, recipient, amt);
        }
    }
}

File 24 of 57 : IERC4626TokenStreamSplitter.sol
import {ITokenStreamEmitter} from "./ITokenStreamEmitter.sol";
import {IERC4626} from "openzeppelin-v5/interfaces/IERC4626.sol";

interface IERC4626TokenStreamSplitter is IERC4626, ITokenStreamEmitter {}

File 25 of 57 : Test.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

pragma experimental ABIEncoderV2;

// 💬 ABOUT
// Forge Std's default Test.

// 🧩 MODULES
import {console} from "./console.sol";
import {console2} from "./console2.sol";
import {safeconsole} from "./safeconsole.sol";
import {StdAssertions} from "./StdAssertions.sol";
import {StdChains} from "./StdChains.sol";
import {StdCheats} from "./StdCheats.sol";
import {stdError} from "./StdError.sol";
import {StdInvariant} from "./StdInvariant.sol";
import {stdJson} from "./StdJson.sol";
import {stdMath} from "./StdMath.sol";
import {StdStorage, stdStorage} from "./StdStorage.sol";
import {StdStyle} from "./StdStyle.sol";
import {stdToml} from "./StdToml.sol";
import {StdUtils} from "./StdUtils.sol";
import {Vm} from "./Vm.sol";

// 📦 BOILERPLATE
import {TestBase} from "./Base.sol";

// ⭐️ TEST
abstract contract Test is TestBase, StdAssertions, StdChains, StdCheats, StdInvariant, StdUtils {
    // Note: IS_TEST() must return true.
    bool public IS_TEST = true;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";

/**
 * @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
 * The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
 * and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
 * itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
 * offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
 * of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
 * With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
 * underlying math can be found xref:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 */
abstract contract ERC4626 is ERC20, IERC4626 {
    using Math for uint256;

    IERC20 private immutable _asset;
    uint8 private immutable _underlyingDecimals;

    /**
     * @dev Attempted to deposit more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);

    /**
     * @dev Attempted to mint more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);

    /**
     * @dev Attempted to withdraw more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);

    /**
     * @dev Attempted to redeem more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
     */
    constructor(IERC20 asset_) {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
        (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
            abi.encodeCall(IERC20Metadata.decimals, ())
        );
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /** @dev See {IERC4626-asset}. */
    function asset() public view virtual returns (address) {
        return address(_asset);
    }

    /** @dev See {IERC4626-totalAssets}. */
    function totalAssets() public view virtual returns (uint256) {
        return _asset.balanceOf(address(this));
    }

    /** @dev See {IERC4626-convertToShares}. */
    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-convertToAssets}. */
    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxDeposit}. */
    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxMint}. */
    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxWithdraw}. */
    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxRedeem}. */
    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf(owner);
    }

    /** @dev See {IERC4626-previewDeposit}. */
    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-previewMint}. */
    function previewMint(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewWithdraw}. */
    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewRedeem}. */
    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-deposit}. */
    function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-mint}. */
    function mint(uint256 shares, address receiver) public virtual returns (uint256) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /** @dev See {IERC4626-withdraw}. */
    function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxAssets = maxWithdraw(owner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
        }

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-redeem}. */
    function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxShares = maxRedeem(owner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
        }

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If _asset is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20.safeTransferFrom(_asset, caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    ) internal virtual {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If _asset is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20.safeTransfer(_asset, receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }
}

File 27 of 57 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 28 of 57 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 29 of 57 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-Licensem-Identifier: AGPL-3.0-or-later

pragma solidity ^0.8.10;

import "openzeppelin-v5/utils/math/Math.sol";

library StakingMath {
    event StakeDisabled(address indexed account);
    event StakeEnabled(address indexed account);
    event Stake(address indexed account, uint128 amount);
    event Unstake(address indexed account, uint128 amount);
    event Distribute(address indexed rewardToken, uint256 amount);
    event Collect(address indexed rewardToken, address indexed account, uint256 amount);
    event Poke(address account, address rewardToken);

    struct StakeAccount {
        bool disabled;
        uint128 stakes;
    }

    struct Ledger {
        uint256 totalStakes;
        mapping(address => StakeAccount) accounts;
        mapping(address => Reward) rewards;
    }

    struct Reward {
        uint256 rewardGrowthX128;
        uint128 undistributed;
        mapping(address => Account) accounts;
    }

    struct Account {
        uint256 rewardGrowthLastX128;
        uint128 rewardsOwed;
    }

    using StakingMath for Ledger;

    function _calculateRewardGrowth(uint256 totalStakes, uint128 newRewardsAmount) internal pure returns (uint256) {
        if (totalStakes == 0) return 0;
        unchecked {
            return ((uint256(newRewardsAmount) << 128) / totalStakes);
        }
    }

    function disable(Ledger storage self, address account) internal {
        StakeAccount storage sa = self.accounts[account];
        if (!sa.disabled) {
            sa.disabled = true;
            self.totalStakes -= sa.stakes;
            emit StakeDisabled(account);
        }
    }

    function enable(Ledger storage self, address account) internal {
        StakeAccount storage sa = self.accounts[account];
        if (sa.disabled) {
            sa.disabled = false;
            self.totalStakes += sa.stakes;
            emit StakeEnabled(account);
        }
    }

    function effectiveStakes(Ledger storage self, address account) internal view returns (uint128) {
        StakeAccount storage sa = self.accounts[account];
        if (sa.disabled) return 0;
        return sa.stakes;
    }

    function _calculateRewardsOwed(uint128 userStakes, uint256 rewardGrowthX128, uint256 rewardGrowthLastX128) internal pure returns (uint128 rewardsOwed) {
        return uint128(Math.min(type(uint128).max, Math.mulDiv(userStakes, rewardGrowthX128 - rewardGrowthLastX128, 1 << 128)));
    }

    function balanceOf(Ledger storage self, address account) internal view returns (uint128) {
        StakeAccount storage sa = self.accounts[account];
        return sa.stakes;
    }

    function stake(Ledger storage self, address account, uint128 amount) internal {
        if (amount == 0) return;
        StakeAccount storage sa = self.accounts[account];
        sa.stakes += amount;
        if (!sa.disabled) self.totalStakes += amount;
        emit Stake(account, amount);
    }

    function unstake(Ledger storage self, address account, uint128 amount) internal {
        if (amount == 0) return;
        StakeAccount storage sa = self.accounts[account];
        sa.stakes -= amount;
        if (!sa.disabled) self.totalStakes -= amount;
        emit Unstake(account, amount);
    }

    function unstakeAll(Ledger storage self, address account) internal returns (uint128) {
        StakeAccount storage sa = self.accounts[account];
        uint128 amount = sa.stakes;
        self.unstake(account, amount);
        return amount;
    }

    function distribute(Ledger storage self, address rewardToken, uint128 amount) internal {
        if (amount == 0) return;
        Reward storage reward = self.rewards[rewardToken];
        if (self.totalStakes == 0) reward.undistributed += amount;
        else reward.rewardGrowthX128 += _calculateRewardGrowth(self.totalStakes, amount);
        emit Distribute(rewardToken, amount);
    }

    function poke(Ledger storage self, address rewardToken, address account) internal {
        Reward storage reward = self.rewards[rewardToken];
        Account storage acc = reward.accounts[account];
        acc.rewardsOwed = uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(self.effectiveStakes(account), reward.rewardGrowthX128, acc.rewardGrowthLastX128)));
        acc.rewardGrowthLastX128 = reward.rewardGrowthX128;
        emit Poke(account, rewardToken);
    }

    function poke(Ledger storage self, address[] memory rewardTokens, address account) internal {
        uint128 effectiveStake = self.effectiveStakes(account);
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            address rewardToken = rewardTokens[i];
            Reward storage reward = self.rewards[rewardToken];
            Account storage acc = reward.accounts[account];
            acc.rewardsOwed = uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(effectiveStake, reward.rewardGrowthX128, acc.rewardGrowthLastX128)));
            acc.rewardGrowthLastX128 = reward.rewardGrowthX128;
            emit Poke(account, rewardToken);
        }
    }

    function owed(Ledger storage self, address rewardToken, address account) internal view returns (uint128) {
        Reward storage reward = self.rewards[rewardToken];
        Account storage acc = reward.accounts[account];

        return acc.rewardsOwed;
    }

    function claimable(Ledger storage self, address rewardToken, uint128 newRewards, address account) internal view returns (uint128) {
        Reward storage reward = self.rewards[rewardToken];
        Account storage acc = reward.accounts[account];
        uint256 rewardGrowthX128 = reward.rewardGrowthX128 + _calculateRewardGrowth(self.totalStakes, newRewards);

        return uint128(Math.min(type(uint128).max, uint256(acc.rewardsOwed) + _calculateRewardsOwed(self.effectiveStakes(account), rewardGrowthX128, acc.rewardGrowthLastX128)));
    }

    function collect(Ledger storage self, address rewardToken, address account, uint128 amountMax) internal returns (uint128 amount) {
        Reward storage reward = self.rewards[rewardToken];
        Account storage acc = reward.accounts[account];
        uint128 claimableAmount = uint128(Math.min(type(uint128).max, acc.rewardsOwed));
        amount = amountMax <= claimableAmount ? amountMax : claimableAmount;
        if (amount > 0) {
            acc.rewardsOwed -= amount;
            emit Collect(rewardToken, account, amount);
        }
    }

    function collectUndistributed(Ledger storage self, address rewardToken) internal returns (uint128 amount) {
        Reward storage reward = self.rewards[rewardToken];
        amount = reward.undistributed;
        reward.undistributed = 0;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

import {ITokenStreamEmitter} from "contracts/reward/interfaces/ITokenStreamEmitter.sol";
import {Context} from "openzeppelin-v5/utils/Context.sol";

import {ReentrancyGuardTransient} from "openzeppelin-v5/utils/ReentrancyGuardTransient.sol";
import {SlotDerivation} from "openzeppelin-v5/utils/SlotDerivation.sol";
import {TransientSlot} from "openzeppelin-v5/utils/TransientSlot.sol";
import {Math} from "openzeppelin-v5/utils/math/Math.sol";

abstract contract TokenStreamEmitter is ITokenStreamEmitter, ReentrancyGuardTransient {
    using TransientSlot for bytes32;
    using TransientSlot for TransientSlot.Uint256Slot;
    using SlotDerivation for bytes32;

    bytes32 private constant pendingOutputAmountCacheSlot = 0x9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa00; // erc7201 "TokenStreamEmitter.pendingOutputAmountCached"

    function readCache(address token, address account) private view returns (bool, uint128) {
        TransientSlot.Uint256Slot slot = pendingOutputAmountCacheSlot.deriveMapping(token).deriveMapping(account).asUint256();
        uint256 cached = slot.tload();
        if (cached >> 255 == 1) return (true, uint128(cached));
        return (false, 0);
    }

    function writeCache(address token, address account, uint128 value) private {
        TransientSlot.Uint256Slot slot = pendingOutputAmountCacheSlot.deriveMapping(token).deriveMapping(account).asUint256();

        slot.tstore(uint256(1 << 255) | value);
    }

    // @notice amount of tokens that can be claimed by the account.
    // @dev the return value of this function must not decrease except when _sendOutput was called.
    function _pendingOutputAmount(address token, address account) internal view virtual returns (uint128);

    // @notice _pendingOutputAmount but without staticcall constraint.
    // @dev the return value of this function must not decrease except when _sendOutput was called.
    // @dev this is used instead of the static version, whenever possible.
    function _pendingOutputAmountWithUpdate(address token, address account) internal virtual returns (uint128);

    // @notice actually transfer the token
    // @dev the caller ensures that maxAmount <= _pendingOutputAmount
    function _sendOutput(address token, address account, address recipient, uint128 maxAmount) internal virtual returns (uint128 amount);

    // @notice the list of tokens this contract can emit.
    // @dev the return value of this function must not change at any circumstance.
    function _outputTokens() internal view virtual returns (address[] memory);

    function _tokenOutputPerSecondX128(address token, address account) internal view virtual returns (uint256);

    function outputTokens() external view returns (address[] memory) {
        return _outputTokens();
    }

    function collect(address token, address recipient, uint128 maxAmount) external nonReentrant returns (uint128) {
        address account = msg.sender;

        uint128 amount = _sendOutput(token, account, recipient, uint128(Math.min(_collectableAmountWithUpdate(token, account), maxAmount)));

        (bool cached, uint128 cache) = readCache(token, account);
        if (cached) writeCache(token, account, cache - amount);
        emit Collect(token, account, recipient, amount);
        return amount;
    }

    function collectAll(address recipient) external nonReentrant returns (uint128[] memory) {
        address[] memory tokens = _outputTokens();
        uint128[] memory amounts = new uint128[](tokens.length);
        address account = msg.sender;
        for (uint256 i = 0; i < tokens.length; i++) {
            amounts[i] = _sendOutput(tokens[i], account, recipient, _collectableAmountWithUpdate(tokens[i], account));
            (bool cached, uint128 cache) = readCache(tokens[i], account);
            if (cached) writeCache(tokens[i], account, cache - amounts[i]);
            emit Collect(tokens[i], account, recipient, amounts[i]);
        }
        return amounts;
    }

    function collectableAmount(address token, address account) external view returns (uint128) {
        (bool cached, uint128 cache) = readCache(token, account);
        if (cached) return cache;
        return _pendingOutputAmount(token, account);
    }

    function _collectableAmountWithUpdate(address token, address account) internal returns (uint128) {
        (bool cached, uint128 cache) = readCache(token, account);
        if (cached) return cache;
        uint128 fetched = _pendingOutputAmountWithUpdate(token, account);
        writeCache(token, account, fetched);
        return fetched;
    }

    function collectableAmountWithUpdate(address token, address account) external nonReentrant returns (uint128) {
        return _collectableAmountWithUpdate(token, account);
    }

    function tokenOutputPerSecondX128(address token, address account) external view returns (uint256) {
        return _tokenOutputPerSecondX128(token, account);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.19;

interface IRewardSource {
    function rewardToken() external view returns (address);

    function collect(uint128 amountMax, address recipient) external returns (uint128);

    function collectableAmount(address account) external view returns (uint128);

    function rewardsPerSecondX128(address account) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 34 of 57 : console.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;

library console {
    address constant CONSOLE_ADDRESS =
        0x000000000000000000636F6e736F6c652e6c6f67;

    function _sendLogPayloadImplementation(bytes memory payload) internal view {
        address consoleAddress = CONSOLE_ADDRESS;
        /// @solidity memory-safe-assembly
        assembly {
            pop(
                staticcall(
                    gas(),
                    consoleAddress,
                    add(payload, 32),
                    mload(payload),
                    0,
                    0
                )
            )
        }
    }

    function _castToPure(
      function(bytes memory) internal view fnIn
    ) internal pure returns (function(bytes memory) pure fnOut) {
        assembly {
            fnOut := fnIn
        }
    }

    function _sendLogPayload(bytes memory payload) internal pure {
        _castToPure(_sendLogPayloadImplementation)(payload);
    }

    function log() internal pure {
        _sendLogPayload(abi.encodeWithSignature("log()"));
    }

    function logInt(int256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
    }

    function logUint(uint256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
    }

    function logString(string memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
    }

    function logBool(bool p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
    }

    function logAddress(address p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
    }

    function logBytes(bytes memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
    }

    function logBytes1(bytes1 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
    }

    function logBytes2(bytes2 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
    }

    function logBytes3(bytes3 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
    }

    function logBytes4(bytes4 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
    }

    function logBytes5(bytes5 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
    }

    function logBytes6(bytes6 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
    }

    function logBytes7(bytes7 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
    }

    function logBytes8(bytes8 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
    }

    function logBytes9(bytes9 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
    }

    function logBytes10(bytes10 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
    }

    function logBytes11(bytes11 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
    }

    function logBytes12(bytes12 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
    }

    function logBytes13(bytes13 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
    }

    function logBytes14(bytes14 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
    }

    function logBytes15(bytes15 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
    }

    function logBytes16(bytes16 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
    }

    function logBytes17(bytes17 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
    }

    function logBytes18(bytes18 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
    }

    function logBytes19(bytes19 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
    }

    function logBytes20(bytes20 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
    }

    function logBytes21(bytes21 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
    }

    function logBytes22(bytes22 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
    }

    function logBytes23(bytes23 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
    }

    function logBytes24(bytes24 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
    }

    function logBytes25(bytes25 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
    }

    function logBytes26(bytes26 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
    }

    function logBytes27(bytes27 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
    }

    function logBytes28(bytes28 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
    }

    function logBytes29(bytes29 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
    }

    function logBytes30(bytes30 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
    }

    function logBytes31(bytes31 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
    }

    function logBytes32(bytes32 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
    }

    function log(uint256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
    }

    function log(int256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
    }

    function log(string memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
    }

    function log(bool p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
    }

    function log(address p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
    }

    function log(uint256 p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1));
    }

    function log(uint256 p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1));
    }

    function log(uint256 p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1));
    }

    function log(uint256 p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1));
    }

    function log(string memory p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1));
    }

    function log(string memory p0, int256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1));
    }

    function log(string memory p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
    }

    function log(string memory p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
    }

    function log(string memory p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
    }

    function log(bool p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1));
    }

    function log(bool p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
    }

    function log(bool p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
    }

    function log(bool p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
    }

    function log(address p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1));
    }

    function log(address p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
    }

    function log(address p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
    }

    function log(address p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
    }

    function log(uint256 p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
    }

    function log(string memory p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2));
    }

    function log(string memory p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
    }

    function log(string memory p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
    }

    function log(string memory p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
    }

    function log(bool p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2));
    }

    function log(bool p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
    }

    function log(bool p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
    }

    function log(bool p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
    }

    function log(bool p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2));
    }

    function log(bool p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
    }

    function log(bool p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
    }

    function log(bool p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2));
    }

    function log(address p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2));
    }

    function log(address p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
    }

    function log(address p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
    }

    function log(address p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
    }

    function log(address p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2));
    }

    function log(address p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
    }

    function log(address p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
    }

    function log(address p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
    }

    function log(address p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2));
    }

    function log(address p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
    }

    function log(address p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
    }

    function log(address p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
    }
}

File 35 of 57 : console2.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;

import {console as console2} from "./console.sol";

File 36 of 57 : safeconsole.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

/// @author philogy <https://github.com/philogy>
/// @dev Code generated automatically by script.
library safeconsole {
    uint256 constant CONSOLE_ADDR = 0x000000000000000000000000000000000000000000636F6e736F6c652e6c6f67;

    // Credit to [0age](https://twitter.com/z0age/status/1654922202930888704) and [0xdapper](https://github.com/foundry-rs/forge-std/pull/374)
    // for the view-to-pure log trick.
    function _sendLogPayload(uint256 offset, uint256 size) private pure {
        function(uint256, uint256) internal view fnIn = _sendLogPayloadView;
        function(uint256, uint256) internal pure pureSendLogPayload;
        /// @solidity memory-safe-assembly
        assembly {
            pureSendLogPayload := fnIn
        }
        pureSendLogPayload(offset, size);
    }

    function _sendLogPayloadView(uint256 offset, uint256 size) private view {
        /// @solidity memory-safe-assembly
        assembly {
            pop(staticcall(gas(), CONSOLE_ADDR, offset, size, 0x0, 0x0))
        }
    }

    function _memcopy(uint256 fromOffset, uint256 toOffset, uint256 length) private pure {
        function(uint256, uint256, uint256) internal view fnIn = _memcopyView;
        function(uint256, uint256, uint256) internal pure pureMemcopy;
        /// @solidity memory-safe-assembly
        assembly {
            pureMemcopy := fnIn
        }
        pureMemcopy(fromOffset, toOffset, length);
    }

    function _memcopyView(uint256 fromOffset, uint256 toOffset, uint256 length) private view {
        /// @solidity memory-safe-assembly
        assembly {
            pop(staticcall(gas(), 0x4, fromOffset, length, toOffset, length))
        }
    }

    function logMemory(uint256 offset, uint256 length) internal pure {
        if (offset >= 0x60) {
            // Sufficient memory before slice to prepare call header.
            bytes32 m0;
            bytes32 m1;
            bytes32 m2;
            /// @solidity memory-safe-assembly
            assembly {
                m0 := mload(sub(offset, 0x60))
                m1 := mload(sub(offset, 0x40))
                m2 := mload(sub(offset, 0x20))
                // Selector of `log(bytes)`.
                mstore(sub(offset, 0x60), 0x0be77f56)
                mstore(sub(offset, 0x40), 0x20)
                mstore(sub(offset, 0x20), length)
            }
            _sendLogPayload(offset - 0x44, length + 0x44);
            /// @solidity memory-safe-assembly
            assembly {
                mstore(sub(offset, 0x60), m0)
                mstore(sub(offset, 0x40), m1)
                mstore(sub(offset, 0x20), m2)
            }
        } else {
            // Insufficient space, so copy slice forward, add header and reverse.
            bytes32 m0;
            bytes32 m1;
            bytes32 m2;
            uint256 endOffset = offset + length;
            /// @solidity memory-safe-assembly
            assembly {
                m0 := mload(add(endOffset, 0x00))
                m1 := mload(add(endOffset, 0x20))
                m2 := mload(add(endOffset, 0x40))
            }
            _memcopy(offset, offset + 0x60, length);
            /// @solidity memory-safe-assembly
            assembly {
                // Selector of `log(bytes)`.
                mstore(add(offset, 0x00), 0x0be77f56)
                mstore(add(offset, 0x20), 0x20)
                mstore(add(offset, 0x40), length)
            }
            _sendLogPayload(offset + 0x1c, length + 0x44);
            _memcopy(offset + 0x60, offset, length);
            /// @solidity memory-safe-assembly
            assembly {
                mstore(add(endOffset, 0x00), m0)
                mstore(add(endOffset, 0x20), m1)
                mstore(add(endOffset, 0x40), m2)
            }
        }
    }

    function log(address p0) internal pure {
        bytes32 m0;
        bytes32 m1;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            // Selector of `log(address)`.
            mstore(0x00, 0x2c2ecbc2)
            mstore(0x20, p0)
        }
        _sendLogPayload(0x1c, 0x24);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
        }
    }

    function log(bool p0) internal pure {
        bytes32 m0;
        bytes32 m1;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            // Selector of `log(bool)`.
            mstore(0x00, 0x32458eed)
            mstore(0x20, p0)
        }
        _sendLogPayload(0x1c, 0x24);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
        }
    }

    function log(uint256 p0) internal pure {
        bytes32 m0;
        bytes32 m1;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            // Selector of `log(uint256)`.
            mstore(0x00, 0xf82c50f1)
            mstore(0x20, p0)
        }
        _sendLogPayload(0x1c, 0x24);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
        }
    }

    function log(bytes32 p0) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(string)`.
            mstore(0x00, 0x41304fac)
            mstore(0x20, 0x20)
            writeString(0x40, p0)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, address p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(address,address)`.
            mstore(0x00, 0xdaf0d4aa)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(address p0, bool p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(address,bool)`.
            mstore(0x00, 0x75b605d3)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(address p0, uint256 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(address,uint256)`.
            mstore(0x00, 0x8309e8a8)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(address p0, bytes32 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,string)`.
            mstore(0x00, 0x759f86bb)
            mstore(0x20, p0)
            mstore(0x40, 0x40)
            writeString(0x60, p1)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(bool,address)`.
            mstore(0x00, 0x853c4849)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(bool p0, bool p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(bool,bool)`.
            mstore(0x00, 0x2a110e83)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(bool p0, uint256 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(bool,uint256)`.
            mstore(0x00, 0x399174d3)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(bool p0, bytes32 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,string)`.
            mstore(0x00, 0x8feac525)
            mstore(0x20, p0)
            mstore(0x40, 0x40)
            writeString(0x60, p1)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(uint256,address)`.
            mstore(0x00, 0x69276c86)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(uint256 p0, bool p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(uint256,bool)`.
            mstore(0x00, 0x1c9d7eb3)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(uint256 p0, uint256 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            // Selector of `log(uint256,uint256)`.
            mstore(0x00, 0xf666715a)
            mstore(0x20, p0)
            mstore(0x40, p1)
        }
        _sendLogPayload(0x1c, 0x44);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
        }
    }

    function log(uint256 p0, bytes32 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,string)`.
            mstore(0x00, 0x643fd0df)
            mstore(0x20, p0)
            mstore(0x40, 0x40)
            writeString(0x60, p1)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bytes32 p0, address p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(string,address)`.
            mstore(0x00, 0x319af333)
            mstore(0x20, 0x40)
            mstore(0x40, p1)
            writeString(0x60, p0)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bytes32 p0, bool p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(string,bool)`.
            mstore(0x00, 0xc3b55635)
            mstore(0x20, 0x40)
            mstore(0x40, p1)
            writeString(0x60, p0)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bytes32 p0, uint256 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(string,uint256)`.
            mstore(0x00, 0xb60e72cc)
            mstore(0x20, 0x40)
            mstore(0x40, p1)
            writeString(0x60, p0)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bytes32 p0, bytes32 p1) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,string)`.
            mstore(0x00, 0x4b5c4277)
            mstore(0x20, 0x40)
            mstore(0x40, 0x80)
            writeString(0x60, p0)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,address,address)`.
            mstore(0x00, 0x018c84c2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, address p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,address,bool)`.
            mstore(0x00, 0xf2a66286)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, address p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,address,uint256)`.
            mstore(0x00, 0x17fe6185)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, address p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,address,string)`.
            mstore(0x00, 0x007150be)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, bool p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,bool,address)`.
            mstore(0x00, 0xf11699ed)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, bool p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,bool,bool)`.
            mstore(0x00, 0xeb830c92)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, bool p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,bool,uint256)`.
            mstore(0x00, 0x9c4f99fb)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, bool p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,bool,string)`.
            mstore(0x00, 0x212255cc)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, uint256 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,uint256,address)`.
            mstore(0x00, 0x7bc0d848)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, uint256 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,uint256,bool)`.
            mstore(0x00, 0x678209a8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, uint256 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(address,uint256,uint256)`.
            mstore(0x00, 0xb69bcaf6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(address p0, uint256 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,uint256,string)`.
            mstore(0x00, 0xa1f2e8aa)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, bytes32 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,string,address)`.
            mstore(0x00, 0xf08744e8)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, bytes32 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,string,bool)`.
            mstore(0x00, 0xcf020fb1)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, bytes32 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(address,string,uint256)`.
            mstore(0x00, 0x67dd6ff1)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(address p0, bytes32 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(address,string,string)`.
            mstore(0x00, 0xfb772265)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, 0xa0)
            writeString(0x80, p1)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bool p0, address p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,address,address)`.
            mstore(0x00, 0xd2763667)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, address p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,address,bool)`.
            mstore(0x00, 0x18c9c746)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, address p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,address,uint256)`.
            mstore(0x00, 0x5f7b9afb)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, address p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,address,string)`.
            mstore(0x00, 0xde9a9270)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, bool p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,bool,address)`.
            mstore(0x00, 0x1078f68d)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, bool p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,bool,bool)`.
            mstore(0x00, 0x50709698)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, bool p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,bool,uint256)`.
            mstore(0x00, 0x12f21602)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, bool p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,bool,string)`.
            mstore(0x00, 0x2555fa46)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, uint256 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,uint256,address)`.
            mstore(0x00, 0x088ef9d2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, uint256 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,uint256,bool)`.
            mstore(0x00, 0xe8defba9)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, uint256 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(bool,uint256,uint256)`.
            mstore(0x00, 0x37103367)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(bool p0, uint256 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,uint256,string)`.
            mstore(0x00, 0xc3fc3970)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, bytes32 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,string,address)`.
            mstore(0x00, 0x9591b953)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, bytes32 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,string,bool)`.
            mstore(0x00, 0xdbb4c247)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, bytes32 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(bool,string,uint256)`.
            mstore(0x00, 0x1093ee11)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bool p0, bytes32 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(bool,string,string)`.
            mstore(0x00, 0xb076847f)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, 0xa0)
            writeString(0x80, p1)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(uint256 p0, address p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,address,address)`.
            mstore(0x00, 0xbcfd9be0)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, address p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,address,bool)`.
            mstore(0x00, 0x9b6ec042)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, address p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,address,uint256)`.
            mstore(0x00, 0x5a9b5ed5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, address p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,address,string)`.
            mstore(0x00, 0x63cb41f9)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, bool p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,bool,address)`.
            mstore(0x00, 0x35085f7b)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, bool p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,bool,bool)`.
            mstore(0x00, 0x20718650)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, bool p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,bool,uint256)`.
            mstore(0x00, 0x20098014)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, bool p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,bool,string)`.
            mstore(0x00, 0x85775021)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, uint256 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,uint256,address)`.
            mstore(0x00, 0x5c96b331)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, uint256 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,uint256,bool)`.
            mstore(0x00, 0x4766da72)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, uint256 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            // Selector of `log(uint256,uint256,uint256)`.
            mstore(0x00, 0xd1ed7a3c)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
        }
        _sendLogPayload(0x1c, 0x64);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
        }
    }

    function log(uint256 p0, uint256 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,uint256,string)`.
            mstore(0x00, 0x71d04af2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x60)
            writeString(0x80, p2)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, bytes32 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,string,address)`.
            mstore(0x00, 0x7afac959)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, bytes32 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,string,bool)`.
            mstore(0x00, 0x4ceda75a)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, bytes32 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(uint256,string,uint256)`.
            mstore(0x00, 0x37aa7d4c)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, p2)
            writeString(0x80, p1)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(uint256 p0, bytes32 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(uint256,string,string)`.
            mstore(0x00, 0xb115611f)
            mstore(0x20, p0)
            mstore(0x40, 0x60)
            mstore(0x60, 0xa0)
            writeString(0x80, p1)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, address p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,address,address)`.
            mstore(0x00, 0xfcec75e0)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, address p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,address,bool)`.
            mstore(0x00, 0xc91d5ed4)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, address p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,address,uint256)`.
            mstore(0x00, 0x0d26b925)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, address p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,address,string)`.
            mstore(0x00, 0xe0e9ad4f)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, 0xa0)
            writeString(0x80, p0)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, bool p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,bool,address)`.
            mstore(0x00, 0x932bbb38)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, bool p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,bool,bool)`.
            mstore(0x00, 0x850b7ad6)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, bool p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,bool,uint256)`.
            mstore(0x00, 0xc95958d6)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, bool p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,bool,string)`.
            mstore(0x00, 0xe298f47d)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, 0xa0)
            writeString(0x80, p0)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, uint256 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,uint256,address)`.
            mstore(0x00, 0x1c7ec448)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, uint256 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,uint256,bool)`.
            mstore(0x00, 0xca7733b1)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, uint256 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            // Selector of `log(string,uint256,uint256)`.
            mstore(0x00, 0xca47c4eb)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, p2)
            writeString(0x80, p0)
        }
        _sendLogPayload(0x1c, 0xa4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
        }
    }

    function log(bytes32 p0, uint256 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,uint256,string)`.
            mstore(0x00, 0x5970e089)
            mstore(0x20, 0x60)
            mstore(0x40, p1)
            mstore(0x60, 0xa0)
            writeString(0x80, p0)
            writeString(0xc0, p2)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, bytes32 p1, address p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,string,address)`.
            mstore(0x00, 0x95ed0195)
            mstore(0x20, 0x60)
            mstore(0x40, 0xa0)
            mstore(0x60, p2)
            writeString(0x80, p0)
            writeString(0xc0, p1)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, bytes32 p1, bool p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,string,bool)`.
            mstore(0x00, 0xb0e0f9b5)
            mstore(0x20, 0x60)
            mstore(0x40, 0xa0)
            mstore(0x60, p2)
            writeString(0x80, p0)
            writeString(0xc0, p1)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, bytes32 p1, uint256 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            // Selector of `log(string,string,uint256)`.
            mstore(0x00, 0x5821efa1)
            mstore(0x20, 0x60)
            mstore(0x40, 0xa0)
            mstore(0x60, p2)
            writeString(0x80, p0)
            writeString(0xc0, p1)
        }
        _sendLogPayload(0x1c, 0xe4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
        }
    }

    function log(bytes32 p0, bytes32 p1, bytes32 p2) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            // Selector of `log(string,string,string)`.
            mstore(0x00, 0x2ced7cef)
            mstore(0x20, 0x60)
            mstore(0x40, 0xa0)
            mstore(0x60, 0xe0)
            writeString(0x80, p0)
            writeString(0xc0, p1)
            writeString(0x100, p2)
        }
        _sendLogPayload(0x1c, 0x124);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
        }
    }

    function log(address p0, address p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,address,address)`.
            mstore(0x00, 0x665bf134)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,address,bool)`.
            mstore(0x00, 0x0e378994)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,address,uint256)`.
            mstore(0x00, 0x94250d77)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,address,string)`.
            mstore(0x00, 0xf808da20)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,bool,address)`.
            mstore(0x00, 0x9f1bc36e)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,bool,bool)`.
            mstore(0x00, 0x2cd4134a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,bool,uint256)`.
            mstore(0x00, 0x3971e78c)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,bool,string)`.
            mstore(0x00, 0xaa6540c8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,uint256,address)`.
            mstore(0x00, 0x8da6def5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,uint256,bool)`.
            mstore(0x00, 0x9b4254e2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,address,uint256,uint256)`.
            mstore(0x00, 0xbe553481)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, address p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,uint256,string)`.
            mstore(0x00, 0xfdb4f990)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,string,address)`.
            mstore(0x00, 0x8f736d16)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,string,bool)`.
            mstore(0x00, 0x6f1a594e)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,address,string,uint256)`.
            mstore(0x00, 0xef1cefe7)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, address p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,address,string,string)`.
            mstore(0x00, 0x21bdaf25)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bool p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,address,address)`.
            mstore(0x00, 0x660375dd)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,address,bool)`.
            mstore(0x00, 0xa6f50b0f)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,address,uint256)`.
            mstore(0x00, 0xa75c59de)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,address,string)`.
            mstore(0x00, 0x2dd778e6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,bool,address)`.
            mstore(0x00, 0xcf394485)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,bool,bool)`.
            mstore(0x00, 0xcac43479)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,bool,uint256)`.
            mstore(0x00, 0x8c4e5de6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,bool,string)`.
            mstore(0x00, 0xdfc4a2e8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,uint256,address)`.
            mstore(0x00, 0xccf790a1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,uint256,bool)`.
            mstore(0x00, 0xc4643e20)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,bool,uint256,uint256)`.
            mstore(0x00, 0x386ff5f4)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, bool p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,uint256,string)`.
            mstore(0x00, 0x0aa6cfad)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,string,address)`.
            mstore(0x00, 0x19fd4956)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,string,bool)`.
            mstore(0x00, 0x50ad461d)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,bool,string,uint256)`.
            mstore(0x00, 0x80e6a20b)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,bool,string,string)`.
            mstore(0x00, 0x475c5c33)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, uint256 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,address,address)`.
            mstore(0x00, 0x478d1c62)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,address,bool)`.
            mstore(0x00, 0xa1bcc9b3)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,address,uint256)`.
            mstore(0x00, 0x100f650e)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,address,string)`.
            mstore(0x00, 0x1da986ea)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,bool,address)`.
            mstore(0x00, 0xa31bfdcc)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,bool,bool)`.
            mstore(0x00, 0x3bf5e537)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,bool,uint256)`.
            mstore(0x00, 0x22f6b999)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,bool,string)`.
            mstore(0x00, 0xc5ad85f9)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,uint256,address)`.
            mstore(0x00, 0x20e3984d)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,uint256,bool)`.
            mstore(0x00, 0x66f1bc67)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(address,uint256,uint256,uint256)`.
            mstore(0x00, 0x34f0e636)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(address p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,uint256,string)`.
            mstore(0x00, 0x4a28c017)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,string,address)`.
            mstore(0x00, 0x5c430d47)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,string,bool)`.
            mstore(0x00, 0xcf18105c)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,uint256,string,uint256)`.
            mstore(0x00, 0xbf01f891)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,uint256,string,string)`.
            mstore(0x00, 0x88a8c406)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,address,address)`.
            mstore(0x00, 0x0d36fa20)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,address,bool)`.
            mstore(0x00, 0x0df12b76)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,address,uint256)`.
            mstore(0x00, 0x457fe3cf)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,address,string)`.
            mstore(0x00, 0xf7e36245)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,bool,address)`.
            mstore(0x00, 0x205871c2)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,bool,bool)`.
            mstore(0x00, 0x5f1d5c9f)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,bool,uint256)`.
            mstore(0x00, 0x515e38b6)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,bool,string)`.
            mstore(0x00, 0xbc0b61fe)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,uint256,address)`.
            mstore(0x00, 0x63183678)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,uint256,bool)`.
            mstore(0x00, 0x0ef7e050)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(address,string,uint256,uint256)`.
            mstore(0x00, 0x1dc8e1b8)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(address p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,uint256,string)`.
            mstore(0x00, 0x448830a8)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,string,address)`.
            mstore(0x00, 0xa04e2f87)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,string,bool)`.
            mstore(0x00, 0x35a5071f)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(address,string,string,uint256)`.
            mstore(0x00, 0x159f8927)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(address p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(address,string,string,string)`.
            mstore(0x00, 0x5d02c50b)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bool p0, address p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,address,address)`.
            mstore(0x00, 0x1d14d001)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,address,bool)`.
            mstore(0x00, 0x46600be0)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,address,uint256)`.
            mstore(0x00, 0x0c66d1be)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,address,string)`.
            mstore(0x00, 0xd812a167)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,bool,address)`.
            mstore(0x00, 0x1c41a336)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,bool,bool)`.
            mstore(0x00, 0x6a9c478b)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,bool,uint256)`.
            mstore(0x00, 0x07831502)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,bool,string)`.
            mstore(0x00, 0x4a66cb34)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,uint256,address)`.
            mstore(0x00, 0x136b05dd)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,uint256,bool)`.
            mstore(0x00, 0xd6019f1c)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,address,uint256,uint256)`.
            mstore(0x00, 0x7bf181a1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, address p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,uint256,string)`.
            mstore(0x00, 0x51f09ff8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,string,address)`.
            mstore(0x00, 0x6f7c603e)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,string,bool)`.
            mstore(0x00, 0xe2bfd60b)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,address,string,uint256)`.
            mstore(0x00, 0xc21f64c7)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, address p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,address,string,string)`.
            mstore(0x00, 0xa73c1db6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bool p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,address,address)`.
            mstore(0x00, 0xf4880ea4)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,address,bool)`.
            mstore(0x00, 0xc0a302d8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,address,uint256)`.
            mstore(0x00, 0x4c123d57)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,address,string)`.
            mstore(0x00, 0xa0a47963)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,bool,address)`.
            mstore(0x00, 0x8c329b1a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,bool,bool)`.
            mstore(0x00, 0x3b2a5ce0)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,bool,uint256)`.
            mstore(0x00, 0x6d7045c1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,bool,string)`.
            mstore(0x00, 0x2ae408d4)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,uint256,address)`.
            mstore(0x00, 0x54a7a9a0)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,uint256,bool)`.
            mstore(0x00, 0x619e4d0e)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,bool,uint256,uint256)`.
            mstore(0x00, 0x0bb00eab)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, bool p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,uint256,string)`.
            mstore(0x00, 0x7dd4d0e0)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,string,address)`.
            mstore(0x00, 0xf9ad2b89)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,string,bool)`.
            mstore(0x00, 0xb857163a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,bool,string,uint256)`.
            mstore(0x00, 0xe3a9ca2f)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,bool,string,string)`.
            mstore(0x00, 0x6d1e8751)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, uint256 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,address,address)`.
            mstore(0x00, 0x26f560a8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,address,bool)`.
            mstore(0x00, 0xb4c314ff)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,address,uint256)`.
            mstore(0x00, 0x1537dc87)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,address,string)`.
            mstore(0x00, 0x1bb3b09a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,bool,address)`.
            mstore(0x00, 0x9acd3616)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,bool,bool)`.
            mstore(0x00, 0xceb5f4d7)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,bool,uint256)`.
            mstore(0x00, 0x7f9bbca2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,bool,string)`.
            mstore(0x00, 0x9143dbb1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,uint256,address)`.
            mstore(0x00, 0x00dd87b9)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,uint256,bool)`.
            mstore(0x00, 0xbe984353)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(bool,uint256,uint256,uint256)`.
            mstore(0x00, 0x374bb4b2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(bool p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,uint256,string)`.
            mstore(0x00, 0x8e69fb5d)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,string,address)`.
            mstore(0x00, 0xfedd1fff)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,string,bool)`.
            mstore(0x00, 0xe5e70b2b)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,uint256,string,uint256)`.
            mstore(0x00, 0x6a1199e2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,uint256,string,string)`.
            mstore(0x00, 0xf5bc2249)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,address,address)`.
            mstore(0x00, 0x2b2b18dc)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,address,bool)`.
            mstore(0x00, 0x6dd434ca)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,address,uint256)`.
            mstore(0x00, 0xa5cada94)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,address,string)`.
            mstore(0x00, 0x12d6c788)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,bool,address)`.
            mstore(0x00, 0x538e06ab)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,bool,bool)`.
            mstore(0x00, 0xdc5e935b)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,bool,uint256)`.
            mstore(0x00, 0x1606a393)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,bool,string)`.
            mstore(0x00, 0x483d0416)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,uint256,address)`.
            mstore(0x00, 0x1596a1ce)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,uint256,bool)`.
            mstore(0x00, 0x6b0e5d53)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(bool,string,uint256,uint256)`.
            mstore(0x00, 0x28863fcb)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bool p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,uint256,string)`.
            mstore(0x00, 0x1ad96de6)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,string,address)`.
            mstore(0x00, 0x97d394d8)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,string,bool)`.
            mstore(0x00, 0x1e4b87e5)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(bool,string,string,uint256)`.
            mstore(0x00, 0x7be0c3eb)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bool p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(bool,string,string,string)`.
            mstore(0x00, 0x1762e32a)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(uint256 p0, address p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,address,address)`.
            mstore(0x00, 0x2488b414)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,address,bool)`.
            mstore(0x00, 0x091ffaf5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,address,uint256)`.
            mstore(0x00, 0x736efbb6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,address,string)`.
            mstore(0x00, 0x031c6f73)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,bool,address)`.
            mstore(0x00, 0xef72c513)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,bool,bool)`.
            mstore(0x00, 0xe351140f)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,bool,uint256)`.
            mstore(0x00, 0x5abd992a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,bool,string)`.
            mstore(0x00, 0x90fb06aa)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,uint256,address)`.
            mstore(0x00, 0x15c127b5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,uint256,bool)`.
            mstore(0x00, 0x5f743a7c)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,address,uint256,uint256)`.
            mstore(0x00, 0x0c9cd9c1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, address p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,uint256,string)`.
            mstore(0x00, 0xddb06521)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,string,address)`.
            mstore(0x00, 0x9cba8fff)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,string,bool)`.
            mstore(0x00, 0xcc32ab07)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,address,string,uint256)`.
            mstore(0x00, 0x46826b5d)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, address p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,address,string,string)`.
            mstore(0x00, 0x3e128ca3)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bool p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,address,address)`.
            mstore(0x00, 0xa1ef4cbb)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,address,bool)`.
            mstore(0x00, 0x454d54a5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,address,uint256)`.
            mstore(0x00, 0x078287f5)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,address,string)`.
            mstore(0x00, 0xade052c7)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,bool,address)`.
            mstore(0x00, 0x69640b59)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,bool,bool)`.
            mstore(0x00, 0xb6f577a1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,bool,uint256)`.
            mstore(0x00, 0x7464ce23)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,bool,string)`.
            mstore(0x00, 0xdddb9561)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,uint256,address)`.
            mstore(0x00, 0x88cb6041)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,uint256,bool)`.
            mstore(0x00, 0x91a02e2a)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,bool,uint256,uint256)`.
            mstore(0x00, 0xc6acc7a8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, bool p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,uint256,string)`.
            mstore(0x00, 0xde03e774)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,string,address)`.
            mstore(0x00, 0xef529018)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,string,bool)`.
            mstore(0x00, 0xeb928d7f)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,bool,string,uint256)`.
            mstore(0x00, 0x2c1d0746)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,bool,string,string)`.
            mstore(0x00, 0x68c8b8bd)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, uint256 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,address,address)`.
            mstore(0x00, 0x56a5d1b1)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,address,bool)`.
            mstore(0x00, 0x15cac476)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,address,uint256)`.
            mstore(0x00, 0x88f6e4b2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,address,string)`.
            mstore(0x00, 0x6cde40b8)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,bool,address)`.
            mstore(0x00, 0x9a816a83)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,bool,bool)`.
            mstore(0x00, 0xab085ae6)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,bool,uint256)`.
            mstore(0x00, 0xeb7f6fd2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,bool,string)`.
            mstore(0x00, 0xa5b4fc99)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,uint256,address)`.
            mstore(0x00, 0xfa8185af)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,uint256,bool)`.
            mstore(0x00, 0xc598d185)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        /// @solidity memory-safe-assembly
        assembly {
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            // Selector of `log(uint256,uint256,uint256,uint256)`.
            mstore(0x00, 0x193fb800)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
        }
        _sendLogPayload(0x1c, 0x84);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
        }
    }

    function log(uint256 p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,uint256,string)`.
            mstore(0x00, 0x59cfcbe3)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0x80)
            writeString(0xa0, p3)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,string,address)`.
            mstore(0x00, 0x42d21db7)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,string,bool)`.
            mstore(0x00, 0x7af6ab25)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,uint256,string,uint256)`.
            mstore(0x00, 0x5da297eb)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, p3)
            writeString(0xa0, p2)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,uint256,string,string)`.
            mstore(0x00, 0x27d8afd2)
            mstore(0x20, p0)
            mstore(0x40, p1)
            mstore(0x60, 0x80)
            mstore(0x80, 0xc0)
            writeString(0xa0, p2)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,address,address)`.
            mstore(0x00, 0x6168ed61)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,address,bool)`.
            mstore(0x00, 0x90c30a56)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,address,uint256)`.
            mstore(0x00, 0xe8d3018d)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,address,string)`.
            mstore(0x00, 0x9c3adfa1)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,bool,address)`.
            mstore(0x00, 0xae2ec581)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,bool,bool)`.
            mstore(0x00, 0xba535d9c)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,bool,uint256)`.
            mstore(0x00, 0xcf009880)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,bool,string)`.
            mstore(0x00, 0xd2d423cd)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,uint256,address)`.
            mstore(0x00, 0x3b2279b4)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,uint256,bool)`.
            mstore(0x00, 0x691a8f74)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(uint256,string,uint256,uint256)`.
            mstore(0x00, 0x82c25b74)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p1)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(uint256 p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,uint256,string)`.
            mstore(0x00, 0xb7b914ca)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p1)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,string,address)`.
            mstore(0x00, 0xd583c602)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,string,bool)`.
            mstore(0x00, 0xb3a6b6bd)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(uint256,string,string,uint256)`.
            mstore(0x00, 0xb028c9bd)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(uint256 p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(uint256,string,string,string)`.
            mstore(0x00, 0x21ad0683)
            mstore(0x20, p0)
            mstore(0x40, 0x80)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p1)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, address p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,address,address)`.
            mstore(0x00, 0xed8f28f6)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,address,bool)`.
            mstore(0x00, 0xb59dbd60)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,address,uint256)`.
            mstore(0x00, 0x8ef3f399)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,address,string)`.
            mstore(0x00, 0x800a1c67)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,bool,address)`.
            mstore(0x00, 0x223603bd)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,bool,bool)`.
            mstore(0x00, 0x79884c2b)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,bool,uint256)`.
            mstore(0x00, 0x3e9f866a)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,bool,string)`.
            mstore(0x00, 0x0454c079)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,uint256,address)`.
            mstore(0x00, 0x63fb8bc5)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,uint256,bool)`.
            mstore(0x00, 0xfc4845f0)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,address,uint256,uint256)`.
            mstore(0x00, 0xf8f51b1e)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, address p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,uint256,string)`.
            mstore(0x00, 0x5a477632)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,string,address)`.
            mstore(0x00, 0xaabc9a31)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,string,bool)`.
            mstore(0x00, 0x5f15d28c)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,address,string,uint256)`.
            mstore(0x00, 0x91d1112e)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, address p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,address,string,string)`.
            mstore(0x00, 0x245986f2)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bool p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,address,address)`.
            mstore(0x00, 0x33e9dd1d)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,address,bool)`.
            mstore(0x00, 0x958c28c6)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,address,uint256)`.
            mstore(0x00, 0x5d08bb05)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,address,string)`.
            mstore(0x00, 0x2d8e33a4)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,bool,address)`.
            mstore(0x00, 0x7190a529)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,bool,bool)`.
            mstore(0x00, 0x895af8c5)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,bool,uint256)`.
            mstore(0x00, 0x8e3f78a9)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,bool,string)`.
            mstore(0x00, 0x9d22d5dd)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,uint256,address)`.
            mstore(0x00, 0x935e09bf)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,uint256,bool)`.
            mstore(0x00, 0x8af7cf8a)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,bool,uint256,uint256)`.
            mstore(0x00, 0x64b5bb67)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, bool p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,uint256,string)`.
            mstore(0x00, 0x742d6ee7)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,string,address)`.
            mstore(0x00, 0xe0625b29)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,string,bool)`.
            mstore(0x00, 0x3f8a701d)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,bool,string,uint256)`.
            mstore(0x00, 0x24f91465)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bool p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,bool,string,string)`.
            mstore(0x00, 0xa826caeb)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, uint256 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,address,address)`.
            mstore(0x00, 0x5ea2b7ae)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,address,bool)`.
            mstore(0x00, 0x82112a42)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,address,uint256)`.
            mstore(0x00, 0x4f04fdc6)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,address,string)`.
            mstore(0x00, 0x9ffb2f93)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,bool,address)`.
            mstore(0x00, 0xe0e95b98)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,bool,bool)`.
            mstore(0x00, 0x354c36d6)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,bool,uint256)`.
            mstore(0x00, 0xe41b6f6f)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,bool,string)`.
            mstore(0x00, 0xabf73a98)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,uint256,address)`.
            mstore(0x00, 0xe21de278)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,uint256,bool)`.
            mstore(0x00, 0x7626db92)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            // Selector of `log(string,uint256,uint256,uint256)`.
            mstore(0x00, 0xa7a87853)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
        }
        _sendLogPayload(0x1c, 0xc4);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
        }
    }

    function log(bytes32 p0, uint256 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,uint256,string)`.
            mstore(0x00, 0x854b3496)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, p2)
            mstore(0x80, 0xc0)
            writeString(0xa0, p0)
            writeString(0xe0, p3)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,string,address)`.
            mstore(0x00, 0x7c4632a4)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,string,bool)`.
            mstore(0x00, 0x7d24491d)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,uint256,string,uint256)`.
            mstore(0x00, 0xc67ea9d1)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, uint256 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,uint256,string,string)`.
            mstore(0x00, 0x5ab84e1f)
            mstore(0x20, 0x80)
            mstore(0x40, p1)
            mstore(0x60, 0xc0)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p2)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, address p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,address,address)`.
            mstore(0x00, 0x439c7bef)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, address p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,address,bool)`.
            mstore(0x00, 0x5ccd4e37)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, address p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,address,uint256)`.
            mstore(0x00, 0x7cc3c607)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, address p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,address,string)`.
            mstore(0x00, 0xeb1bff80)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, bool p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,bool,address)`.
            mstore(0x00, 0xc371c7db)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, bool p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,bool,bool)`.
            mstore(0x00, 0x40785869)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, bool p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,bool,uint256)`.
            mstore(0x00, 0xd6aefad2)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, bool p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,bool,string)`.
            mstore(0x00, 0x5e84b0ea)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, uint256 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,uint256,address)`.
            mstore(0x00, 0x1023f7b2)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, uint256 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,uint256,bool)`.
            mstore(0x00, 0xc3a8a654)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, uint256 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            // Selector of `log(string,string,uint256,uint256)`.
            mstore(0x00, 0xf45d7d2c)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
        }
        _sendLogPayload(0x1c, 0x104);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
        }
    }

    function log(bytes32 p0, bytes32 p1, uint256 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,uint256,string)`.
            mstore(0x00, 0x5d1a971a)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, p2)
            mstore(0x80, 0x100)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p3)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, bytes32 p2, address p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,string,address)`.
            mstore(0x00, 0x6d572f44)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, 0x100)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p2)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, bytes32 p2, bool p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,string,bool)`.
            mstore(0x00, 0x2c1754ed)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, 0x100)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p2)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, bytes32 p2, uint256 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            // Selector of `log(string,string,string,uint256)`.
            mstore(0x00, 0x8eafb02b)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, 0x100)
            mstore(0x80, p3)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p2)
        }
        _sendLogPayload(0x1c, 0x144);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
        }
    }

    function log(bytes32 p0, bytes32 p1, bytes32 p2, bytes32 p3) internal pure {
        bytes32 m0;
        bytes32 m1;
        bytes32 m2;
        bytes32 m3;
        bytes32 m4;
        bytes32 m5;
        bytes32 m6;
        bytes32 m7;
        bytes32 m8;
        bytes32 m9;
        bytes32 m10;
        bytes32 m11;
        bytes32 m12;
        /// @solidity memory-safe-assembly
        assembly {
            function writeString(pos, w) {
                let length := 0
                for {} lt(length, 0x20) { length := add(length, 1) } { if iszero(byte(length, w)) { break } }
                mstore(pos, length)
                let shift := sub(256, shl(3, length))
                mstore(add(pos, 0x20), shl(shift, shr(shift, w)))
            }
            m0 := mload(0x00)
            m1 := mload(0x20)
            m2 := mload(0x40)
            m3 := mload(0x60)
            m4 := mload(0x80)
            m5 := mload(0xa0)
            m6 := mload(0xc0)
            m7 := mload(0xe0)
            m8 := mload(0x100)
            m9 := mload(0x120)
            m10 := mload(0x140)
            m11 := mload(0x160)
            m12 := mload(0x180)
            // Selector of `log(string,string,string,string)`.
            mstore(0x00, 0xde68f20a)
            mstore(0x20, 0x80)
            mstore(0x40, 0xc0)
            mstore(0x60, 0x100)
            mstore(0x80, 0x140)
            writeString(0xa0, p0)
            writeString(0xe0, p1)
            writeString(0x120, p2)
            writeString(0x160, p3)
        }
        _sendLogPayload(0x1c, 0x184);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, m0)
            mstore(0x20, m1)
            mstore(0x40, m2)
            mstore(0x60, m3)
            mstore(0x80, m4)
            mstore(0xa0, m5)
            mstore(0xc0, m6)
            mstore(0xe0, m7)
            mstore(0x100, m8)
            mstore(0x120, m9)
            mstore(0x140, m10)
            mstore(0x160, m11)
            mstore(0x180, m12)
        }
    }
}

File 37 of 57 : StdAssertions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;

import {Vm} from "./Vm.sol";

abstract contract StdAssertions {
    Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));

    event log(string);
    event logs(bytes);

    event log_address(address);
    event log_bytes32(bytes32);
    event log_int(int256);
    event log_uint(uint256);
    event log_bytes(bytes);
    event log_string(string);

    event log_named_address(string key, address val);
    event log_named_bytes32(string key, bytes32 val);
    event log_named_decimal_int(string key, int256 val, uint256 decimals);
    event log_named_decimal_uint(string key, uint256 val, uint256 decimals);
    event log_named_int(string key, int256 val);
    event log_named_uint(string key, uint256 val);
    event log_named_bytes(string key, bytes val);
    event log_named_string(string key, string val);

    event log_array(uint256[] val);
    event log_array(int256[] val);
    event log_array(address[] val);
    event log_named_array(string key, uint256[] val);
    event log_named_array(string key, int256[] val);
    event log_named_array(string key, address[] val);

    bool private _failed;

    function failed() public view returns (bool) {
        if (_failed) {
            return _failed;
        } else {
            return vm.load(address(vm), bytes32("failed")) != bytes32(0);
        }
    }

    function fail() internal virtual {
        vm.store(address(vm), bytes32("failed"), bytes32(uint256(1)));
        _failed = true;
    }

    function assertTrue(bool data) internal pure virtual {
        vm.assertTrue(data);
    }

    function assertTrue(bool data, string memory err) internal pure virtual {
        vm.assertTrue(data, err);
    }

    function assertFalse(bool data) internal pure virtual {
        vm.assertFalse(data);
    }

    function assertFalse(bool data, string memory err) internal pure virtual {
        vm.assertFalse(data, err);
    }

    function assertEq(bool left, bool right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bool left, bool right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(uint256 left, uint256 right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEqDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertEqDecimal(left, right, decimals);
    }

    function assertEqDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertEqDecimal(left, right, decimals, err);
    }

    function assertEq(int256 left, int256 right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEqDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertEqDecimal(left, right, decimals);
    }

    function assertEqDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertEqDecimal(left, right, decimals, err);
    }

    function assertEq(address left, address right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(address left, address right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(bytes32 left, bytes32 right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bytes32 left, bytes32 right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq32(bytes32 left, bytes32 right) internal pure virtual {
        assertEq(left, right);
    }

    function assertEq32(bytes32 left, bytes32 right, string memory err) internal pure virtual {
        assertEq(left, right, err);
    }

    function assertEq(string memory left, string memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(string memory left, string memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(bytes memory left, bytes memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bytes memory left, bytes memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(bool[] memory left, bool[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bool[] memory left, bool[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(uint256[] memory left, uint256[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(uint256[] memory left, uint256[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(int256[] memory left, int256[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(int256[] memory left, int256[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(address[] memory left, address[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(address[] memory left, address[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(bytes32[] memory left, bytes32[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bytes32[] memory left, bytes32[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(string[] memory left, string[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(string[] memory left, string[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    function assertEq(bytes[] memory left, bytes[] memory right) internal pure virtual {
        vm.assertEq(left, right);
    }

    function assertEq(bytes[] memory left, bytes[] memory right, string memory err) internal pure virtual {
        vm.assertEq(left, right, err);
    }

    // Legacy helper
    function assertEqUint(uint256 left, uint256 right) internal pure virtual {
        assertEq(left, right);
    }

    function assertNotEq(bool left, bool right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bool left, bool right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(uint256 left, uint256 right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertNotEqDecimal(left, right, decimals);
    }

    function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals, string memory err)
        internal
        pure
        virtual
    {
        vm.assertNotEqDecimal(left, right, decimals, err);
    }

    function assertNotEq(int256 left, int256 right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEqDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertNotEqDecimal(left, right, decimals);
    }

    function assertNotEqDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertNotEqDecimal(left, right, decimals, err);
    }

    function assertNotEq(address left, address right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(address left, address right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(bytes32 left, bytes32 right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bytes32 left, bytes32 right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq32(bytes32 left, bytes32 right) internal pure virtual {
        assertNotEq(left, right);
    }

    function assertNotEq32(bytes32 left, bytes32 right, string memory err) internal pure virtual {
        assertNotEq(left, right, err);
    }

    function assertNotEq(string memory left, string memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(string memory left, string memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(bytes memory left, bytes memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bytes memory left, bytes memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(bool[] memory left, bool[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bool[] memory left, bool[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(uint256[] memory left, uint256[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(uint256[] memory left, uint256[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(int256[] memory left, int256[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(int256[] memory left, int256[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(address[] memory left, address[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(address[] memory left, address[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(bytes32[] memory left, bytes32[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bytes32[] memory left, bytes32[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(string[] memory left, string[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(string[] memory left, string[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertNotEq(bytes[] memory left, bytes[] memory right) internal pure virtual {
        vm.assertNotEq(left, right);
    }

    function assertNotEq(bytes[] memory left, bytes[] memory right, string memory err) internal pure virtual {
        vm.assertNotEq(left, right, err);
    }

    function assertLt(uint256 left, uint256 right) internal pure virtual {
        vm.assertLt(left, right);
    }

    function assertLt(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertLt(left, right, err);
    }

    function assertLtDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertLtDecimal(left, right, decimals);
    }

    function assertLtDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertLtDecimal(left, right, decimals, err);
    }

    function assertLt(int256 left, int256 right) internal pure virtual {
        vm.assertLt(left, right);
    }

    function assertLt(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertLt(left, right, err);
    }

    function assertLtDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertLtDecimal(left, right, decimals);
    }

    function assertLtDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertLtDecimal(left, right, decimals, err);
    }

    function assertGt(uint256 left, uint256 right) internal pure virtual {
        vm.assertGt(left, right);
    }

    function assertGt(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertGt(left, right, err);
    }

    function assertGtDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertGtDecimal(left, right, decimals);
    }

    function assertGtDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertGtDecimal(left, right, decimals, err);
    }

    function assertGt(int256 left, int256 right) internal pure virtual {
        vm.assertGt(left, right);
    }

    function assertGt(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertGt(left, right, err);
    }

    function assertGtDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertGtDecimal(left, right, decimals);
    }

    function assertGtDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertGtDecimal(left, right, decimals, err);
    }

    function assertLe(uint256 left, uint256 right) internal pure virtual {
        vm.assertLe(left, right);
    }

    function assertLe(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertLe(left, right, err);
    }

    function assertLeDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertLeDecimal(left, right, decimals);
    }

    function assertLeDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertLeDecimal(left, right, decimals, err);
    }

    function assertLe(int256 left, int256 right) internal pure virtual {
        vm.assertLe(left, right);
    }

    function assertLe(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertLe(left, right, err);
    }

    function assertLeDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertLeDecimal(left, right, decimals);
    }

    function assertLeDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertLeDecimal(left, right, decimals, err);
    }

    function assertGe(uint256 left, uint256 right) internal pure virtual {
        vm.assertGe(left, right);
    }

    function assertGe(uint256 left, uint256 right, string memory err) internal pure virtual {
        vm.assertGe(left, right, err);
    }

    function assertGeDecimal(uint256 left, uint256 right, uint256 decimals) internal pure virtual {
        vm.assertGeDecimal(left, right, decimals);
    }

    function assertGeDecimal(uint256 left, uint256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertGeDecimal(left, right, decimals, err);
    }

    function assertGe(int256 left, int256 right) internal pure virtual {
        vm.assertGe(left, right);
    }

    function assertGe(int256 left, int256 right, string memory err) internal pure virtual {
        vm.assertGe(left, right, err);
    }

    function assertGeDecimal(int256 left, int256 right, uint256 decimals) internal pure virtual {
        vm.assertGeDecimal(left, right, decimals);
    }

    function assertGeDecimal(int256 left, int256 right, uint256 decimals, string memory err) internal pure virtual {
        vm.assertGeDecimal(left, right, decimals, err);
    }

    function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta) internal pure virtual {
        vm.assertApproxEqAbs(left, right, maxDelta);
    }

    function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta, string memory err)
        internal
        pure
        virtual
    {
        vm.assertApproxEqAbs(left, right, maxDelta, err);
    }

    function assertApproxEqAbsDecimal(uint256 left, uint256 right, uint256 maxDelta, uint256 decimals)
        internal
        pure
        virtual
    {
        vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals);
    }

    function assertApproxEqAbsDecimal(
        uint256 left,
        uint256 right,
        uint256 maxDelta,
        uint256 decimals,
        string memory err
    ) internal pure virtual {
        vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals, err);
    }

    function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta) internal pure virtual {
        vm.assertApproxEqAbs(left, right, maxDelta);
    }

    function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta, string memory err) internal pure virtual {
        vm.assertApproxEqAbs(left, right, maxDelta, err);
    }

    function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals)
        internal
        pure
        virtual
    {
        vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals);
    }

    function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals, string memory err)
        internal
        pure
        virtual
    {
        vm.assertApproxEqAbsDecimal(left, right, maxDelta, decimals, err);
    }

    function assertApproxEqRel(
        uint256 left,
        uint256 right,
        uint256 maxPercentDelta // An 18 decimal fixed point number, where 1e18 == 100%
    ) internal pure virtual {
        vm.assertApproxEqRel(left, right, maxPercentDelta);
    }

    function assertApproxEqRel(
        uint256 left,
        uint256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        string memory err
    ) internal pure virtual {
        vm.assertApproxEqRel(left, right, maxPercentDelta, err);
    }

    function assertApproxEqRelDecimal(
        uint256 left,
        uint256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        uint256 decimals
    ) internal pure virtual {
        vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals);
    }

    function assertApproxEqRelDecimal(
        uint256 left,
        uint256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        uint256 decimals,
        string memory err
    ) internal pure virtual {
        vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals, err);
    }

    function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta) internal pure virtual {
        vm.assertApproxEqRel(left, right, maxPercentDelta);
    }

    function assertApproxEqRel(
        int256 left,
        int256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        string memory err
    ) internal pure virtual {
        vm.assertApproxEqRel(left, right, maxPercentDelta, err);
    }

    function assertApproxEqRelDecimal(
        int256 left,
        int256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        uint256 decimals
    ) internal pure virtual {
        vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals);
    }

    function assertApproxEqRelDecimal(
        int256 left,
        int256 right,
        uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
        uint256 decimals,
        string memory err
    ) internal pure virtual {
        vm.assertApproxEqRelDecimal(left, right, maxPercentDelta, decimals, err);
    }

    // Inherited from DSTest, not used but kept for backwards-compatibility
    function checkEq0(bytes memory left, bytes memory right) internal pure returns (bool) {
        return keccak256(left) == keccak256(right);
    }

    function assertEq0(bytes memory left, bytes memory right) internal pure virtual {
        assertEq(left, right);
    }

    function assertEq0(bytes memory left, bytes memory right, string memory err) internal pure virtual {
        assertEq(left, right, err);
    }

    function assertNotEq0(bytes memory left, bytes memory right) internal pure virtual {
        assertNotEq(left, right);
    }

    function assertNotEq0(bytes memory left, bytes memory right, string memory err) internal pure virtual {
        assertNotEq(left, right, err);
    }

    function assertEqCall(address target, bytes memory callDataA, bytes memory callDataB) internal virtual {
        assertEqCall(target, callDataA, target, callDataB, true);
    }

    function assertEqCall(address targetA, bytes memory callDataA, address targetB, bytes memory callDataB)
        internal
        virtual
    {
        assertEqCall(targetA, callDataA, targetB, callDataB, true);
    }

    function assertEqCall(address target, bytes memory callDataA, bytes memory callDataB, bool strictRevertData)
        internal
        virtual
    {
        assertEqCall(target, callDataA, target, callDataB, strictRevertData);
    }

    function assertEqCall(
        address targetA,
        bytes memory callDataA,
        address targetB,
        bytes memory callDataB,
        bool strictRevertData
    ) internal virtual {
        (bool successA, bytes memory returnDataA) = address(targetA).call(callDataA);
        (bool successB, bytes memory returnDataB) = address(targetB).call(callDataB);

        if (successA && successB) {
            assertEq(returnDataA, returnDataB, "Call return data does not match");
        }

        if (!successA && !successB && strictRevertData) {
            assertEq(returnDataA, returnDataB, "Call revert data does not match");
        }

        if (!successA && successB) {
            emit log("Error: Calls were not equal");
            emit log_named_bytes("  Left call revert data", returnDataA);
            emit log_named_bytes(" Right call return data", returnDataB);
            revert("assertion failed");
        }

        if (successA && !successB) {
            emit log("Error: Calls were not equal");
            emit log_named_bytes("  Left call return data", returnDataA);
            emit log_named_bytes(" Right call revert data", returnDataB);
            revert("assertion failed");
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

import {VmSafe} from "./Vm.sol";

/**
 * StdChains provides information about EVM compatible chains that can be used in scripts/tests.
 * For each chain, the chain's name, chain ID, and a default RPC URL are provided. Chains are
 * identified by their alias, which is the same as the alias in the `[rpc_endpoints]` section of
 * the `foundry.toml` file. For best UX, ensure the alias in the `foundry.toml` file match the
 * alias used in this contract, which can be found as the first argument to the
 * `setChainWithDefaultRpcUrl` call in the `initializeStdChains` function.
 *
 * There are two main ways to use this contract:
 *   1. Set a chain with `setChain(string memory chainAlias, ChainData memory chain)` or
 *      `setChain(string memory chainAlias, Chain memory chain)`
 *   2. Get a chain with `getChain(string memory chainAlias)` or `getChain(uint256 chainId)`.
 *
 * The first time either of those are used, chains are initialized with the default set of RPC URLs.
 * This is done in `initializeStdChains`, which uses `setChainWithDefaultRpcUrl`. Defaults are recorded in
 * `defaultRpcUrls`.
 *
 * The `setChain` function is straightforward, and it simply saves off the given chain data.
 *
 * The `getChain` methods use `getChainWithUpdatedRpcUrl` to return a chain. For example, let's say
 * we want to retrieve the RPC URL for `mainnet`:
 *   - If you have specified data with `setChain`, it will return that.
 *   - If you have configured a mainnet RPC URL in `foundry.toml`, it will return the URL, provided it
 *     is valid (e.g. a URL is specified, or an environment variable is given and exists).
 *   - If neither of the above conditions is met, the default data is returned.
 *
 * Summarizing the above, the prioritization hierarchy is `setChain` -> `foundry.toml` -> environment variable -> defaults.
 */
abstract contract StdChains {
    VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));

    bool private stdChainsInitialized;

    struct ChainData {
        string name;
        uint256 chainId;
        string rpcUrl;
    }

    struct Chain {
        // The chain name.
        string name;
        // The chain's Chain ID.
        uint256 chainId;
        // The chain's alias. (i.e. what gets specified in `foundry.toml`).
        string chainAlias;
        // A default RPC endpoint for this chain.
        // NOTE: This default RPC URL is included for convenience to facilitate quick tests and
        // experimentation. Do not use this RPC URL for production test suites, CI, or other heavy
        // usage as you will be throttled and this is a disservice to others who need this endpoint.
        string rpcUrl;
    }

    // Maps from the chain's alias (matching the alias in the `foundry.toml` file) to chain data.
    mapping(string => Chain) private chains;
    // Maps from the chain's alias to it's default RPC URL.
    mapping(string => string) private defaultRpcUrls;
    // Maps from a chain ID to it's alias.
    mapping(uint256 => string) private idToAlias;

    bool private fallbackToDefaultRpcUrls = true;

    // The RPC URL will be fetched from config or defaultRpcUrls if possible.
    function getChain(string memory chainAlias) internal virtual returns (Chain memory chain) {
        require(bytes(chainAlias).length != 0, "StdChains getChain(string): Chain alias cannot be the empty string.");

        initializeStdChains();
        chain = chains[chainAlias];
        require(
            chain.chainId != 0,
            string(abi.encodePacked("StdChains getChain(string): Chain with alias \"", chainAlias, "\" not found."))
        );

        chain = getChainWithUpdatedRpcUrl(chainAlias, chain);
    }

    function getChain(uint256 chainId) internal virtual returns (Chain memory chain) {
        require(chainId != 0, "StdChains getChain(uint256): Chain ID cannot be 0.");
        initializeStdChains();
        string memory chainAlias = idToAlias[chainId];

        chain = chains[chainAlias];

        require(
            chain.chainId != 0,
            string(abi.encodePacked("StdChains getChain(uint256): Chain with ID ", vm.toString(chainId), " not found."))
        );

        chain = getChainWithUpdatedRpcUrl(chainAlias, chain);
    }

    // set chain info, with priority to argument's rpcUrl field.
    function setChain(string memory chainAlias, ChainData memory chain) internal virtual {
        require(
            bytes(chainAlias).length != 0,
            "StdChains setChain(string,ChainData): Chain alias cannot be the empty string."
        );

        require(chain.chainId != 0, "StdChains setChain(string,ChainData): Chain ID cannot be 0.");

        initializeStdChains();
        string memory foundAlias = idToAlias[chain.chainId];

        require(
            bytes(foundAlias).length == 0 || keccak256(bytes(foundAlias)) == keccak256(bytes(chainAlias)),
            string(
                abi.encodePacked(
                    "StdChains setChain(string,ChainData): Chain ID ",
                    vm.toString(chain.chainId),
                    " already used by \"",
                    foundAlias,
                    "\"."
                )
            )
        );

        uint256 oldChainId = chains[chainAlias].chainId;
        delete idToAlias[oldChainId];

        chains[chainAlias] =
            Chain({name: chain.name, chainId: chain.chainId, chainAlias: chainAlias, rpcUrl: chain.rpcUrl});
        idToAlias[chain.chainId] = chainAlias;
    }

    // set chain info, with priority to argument's rpcUrl field.
    function setChain(string memory chainAlias, Chain memory chain) internal virtual {
        setChain(chainAlias, ChainData({name: chain.name, chainId: chain.chainId, rpcUrl: chain.rpcUrl}));
    }

    function _toUpper(string memory str) private pure returns (string memory) {
        bytes memory strb = bytes(str);
        bytes memory copy = new bytes(strb.length);
        for (uint256 i = 0; i < strb.length; i++) {
            bytes1 b = strb[i];
            if (b >= 0x61 && b <= 0x7A) {
                copy[i] = bytes1(uint8(b) - 32);
            } else {
                copy[i] = b;
            }
        }
        return string(copy);
    }

    // lookup rpcUrl, in descending order of priority:
    // current -> config (foundry.toml) -> environment variable -> default
    function getChainWithUpdatedRpcUrl(string memory chainAlias, Chain memory chain)
        private
        view
        returns (Chain memory)
    {
        if (bytes(chain.rpcUrl).length == 0) {
            try vm.rpcUrl(chainAlias) returns (string memory configRpcUrl) {
                chain.rpcUrl = configRpcUrl;
            } catch (bytes memory err) {
                string memory envName = string(abi.encodePacked(_toUpper(chainAlias), "_RPC_URL"));
                if (fallbackToDefaultRpcUrls) {
                    chain.rpcUrl = vm.envOr(envName, defaultRpcUrls[chainAlias]);
                } else {
                    chain.rpcUrl = vm.envString(envName);
                }
                // Distinguish 'not found' from 'cannot read'
                // The upstream error thrown by forge for failing cheats changed so we check both the old and new versions
                bytes memory oldNotFoundError =
                    abi.encodeWithSignature("CheatCodeError", string(abi.encodePacked("invalid rpc url ", chainAlias)));
                bytes memory newNotFoundError = abi.encodeWithSignature(
                    "CheatcodeError(string)", string(abi.encodePacked("invalid rpc url: ", chainAlias))
                );
                bytes32 errHash = keccak256(err);
                if (
                    (errHash != keccak256(oldNotFoundError) && errHash != keccak256(newNotFoundError))
                        || bytes(chain.rpcUrl).length == 0
                ) {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, err), mload(err))
                    }
                }
            }
        }
        return chain;
    }

    function setFallbackToDefaultRpcUrls(bool useDefault) internal {
        fallbackToDefaultRpcUrls = useDefault;
    }

    function initializeStdChains() private {
        if (stdChainsInitialized) return;

        stdChainsInitialized = true;

        // If adding an RPC here, make sure to test the default RPC URL in `test_Rpcs` in `StdChains.t.sol`
        setChainWithDefaultRpcUrl("anvil", ChainData("Anvil", 31337, "http://127.0.0.1:8545"));
        setChainWithDefaultRpcUrl(
            "mainnet", ChainData("Mainnet", 1, "https://eth-mainnet.alchemyapi.io/v2/pwc5rmJhrdoaSEfimoKEmsvOjKSmPDrP")
        );
        setChainWithDefaultRpcUrl(
            "sepolia", ChainData("Sepolia", 11155111, "https://sepolia.infura.io/v3/b9794ad1ddf84dfb8c34d6bb5dca2001")
        );
        setChainWithDefaultRpcUrl("holesky", ChainData("Holesky", 17000, "https://rpc.holesky.ethpandaops.io"));
        setChainWithDefaultRpcUrl("optimism", ChainData("Optimism", 10, "https://mainnet.optimism.io"));
        setChainWithDefaultRpcUrl(
            "optimism_sepolia", ChainData("Optimism Sepolia", 11155420, "https://sepolia.optimism.io")
        );
        setChainWithDefaultRpcUrl("arbitrum_one", ChainData("Arbitrum One", 42161, "https://arb1.arbitrum.io/rpc"));
        setChainWithDefaultRpcUrl(
            "arbitrum_one_sepolia", ChainData("Arbitrum One Sepolia", 421614, "https://sepolia-rollup.arbitrum.io/rpc")
        );
        setChainWithDefaultRpcUrl("arbitrum_nova", ChainData("Arbitrum Nova", 42170, "https://nova.arbitrum.io/rpc"));
        setChainWithDefaultRpcUrl("polygon", ChainData("Polygon", 137, "https://polygon-rpc.com"));
        setChainWithDefaultRpcUrl(
            "polygon_amoy", ChainData("Polygon Amoy", 80002, "https://rpc-amoy.polygon.technology")
        );
        setChainWithDefaultRpcUrl("avalanche", ChainData("Avalanche", 43114, "https://api.avax.network/ext/bc/C/rpc"));
        setChainWithDefaultRpcUrl(
            "avalanche_fuji", ChainData("Avalanche Fuji", 43113, "https://api.avax-test.network/ext/bc/C/rpc")
        );
        setChainWithDefaultRpcUrl(
            "bnb_smart_chain", ChainData("BNB Smart Chain", 56, "https://bsc-dataseed1.binance.org")
        );
        setChainWithDefaultRpcUrl(
            "bnb_smart_chain_testnet",
            ChainData("BNB Smart Chain Testnet", 97, "https://rpc.ankr.com/bsc_testnet_chapel")
        );
        setChainWithDefaultRpcUrl("gnosis_chain", ChainData("Gnosis Chain", 100, "https://rpc.gnosischain.com"));
        setChainWithDefaultRpcUrl("moonbeam", ChainData("Moonbeam", 1284, "https://rpc.api.moonbeam.network"));
        setChainWithDefaultRpcUrl(
            "moonriver", ChainData("Moonriver", 1285, "https://rpc.api.moonriver.moonbeam.network")
        );
        setChainWithDefaultRpcUrl("moonbase", ChainData("Moonbase", 1287, "https://rpc.testnet.moonbeam.network"));
        setChainWithDefaultRpcUrl("base_sepolia", ChainData("Base Sepolia", 84532, "https://sepolia.base.org"));
        setChainWithDefaultRpcUrl("base", ChainData("Base", 8453, "https://mainnet.base.org"));
        setChainWithDefaultRpcUrl("blast_sepolia", ChainData("Blast Sepolia", 168587773, "https://sepolia.blast.io"));
        setChainWithDefaultRpcUrl("blast", ChainData("Blast", 81457, "https://rpc.blast.io"));
        setChainWithDefaultRpcUrl("fantom_opera", ChainData("Fantom Opera", 250, "https://rpc.ankr.com/fantom/"));
        setChainWithDefaultRpcUrl(
            "fantom_opera_testnet", ChainData("Fantom Opera Testnet", 4002, "https://rpc.ankr.com/fantom_testnet/")
        );
        setChainWithDefaultRpcUrl("fraxtal", ChainData("Fraxtal", 252, "https://rpc.frax.com"));
        setChainWithDefaultRpcUrl("fraxtal_testnet", ChainData("Fraxtal Testnet", 2522, "https://rpc.testnet.frax.com"));
        setChainWithDefaultRpcUrl(
            "berachain_bartio_testnet", ChainData("Berachain bArtio Testnet", 80084, "https://bartio.rpc.berachain.com")
        );
        setChainWithDefaultRpcUrl("flare", ChainData("Flare", 14, "https://flare-api.flare.network/ext/C/rpc"));
        setChainWithDefaultRpcUrl(
            "flare_coston2", ChainData("Flare Coston2", 114, "https://coston2-api.flare.network/ext/C/rpc")
        );
    }

    // set chain info, with priority to chainAlias' rpc url in foundry.toml
    function setChainWithDefaultRpcUrl(string memory chainAlias, ChainData memory chain) private {
        string memory rpcUrl = chain.rpcUrl;
        defaultRpcUrls[chainAlias] = rpcUrl;
        chain.rpcUrl = "";
        setChain(chainAlias, chain);
        chain.rpcUrl = rpcUrl; // restore argument
    }
}

File 39 of 57 : StdCheats.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

pragma experimental ABIEncoderV2;

import {StdStorage, stdStorage} from "./StdStorage.sol";
import {console2} from "./console2.sol";
import {Vm} from "./Vm.sol";

abstract contract StdCheatsSafe {
    Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));

    uint256 private constant UINT256_MAX =
        115792089237316195423570985008687907853269984665640564039457584007913129639935;

    bool private gasMeteringOff;

    // Data structures to parse Transaction objects from the broadcast artifact
    // that conform to EIP1559. The Raw structs is what is parsed from the JSON
    // and then converted to the one that is used by the user for better UX.

    struct RawTx1559 {
        string[] arguments;
        address contractAddress;
        string contractName;
        // json value name = function
        string functionSig;
        bytes32 hash;
        // json value name = tx
        RawTx1559Detail txDetail;
        // json value name = type
        string opcode;
    }

    struct RawTx1559Detail {
        AccessList[] accessList;
        bytes data;
        address from;
        bytes gas;
        bytes nonce;
        address to;
        bytes txType;
        bytes value;
    }

    struct Tx1559 {
        string[] arguments;
        address contractAddress;
        string contractName;
        string functionSig;
        bytes32 hash;
        Tx1559Detail txDetail;
        string opcode;
    }

    struct Tx1559Detail {
        AccessList[] accessList;
        bytes data;
        address from;
        uint256 gas;
        uint256 nonce;
        address to;
        uint256 txType;
        uint256 value;
    }

    // Data structures to parse Transaction objects from the broadcast artifact
    // that DO NOT conform to EIP1559. The Raw structs is what is parsed from the JSON
    // and then converted to the one that is used by the user for better UX.

    struct TxLegacy {
        string[] arguments;
        address contractAddress;
        string contractName;
        string functionSig;
        string hash;
        string opcode;
        TxDetailLegacy transaction;
    }

    struct TxDetailLegacy {
        AccessList[] accessList;
        uint256 chainId;
        bytes data;
        address from;
        uint256 gas;
        uint256 gasPrice;
        bytes32 hash;
        uint256 nonce;
        bytes1 opcode;
        bytes32 r;
        bytes32 s;
        uint256 txType;
        address to;
        uint8 v;
        uint256 value;
    }

    struct AccessList {
        address accessAddress;
        bytes32[] storageKeys;
    }

    // Data structures to parse Receipt objects from the broadcast artifact.
    // The Raw structs is what is parsed from the JSON
    // and then converted to the one that is used by the user for better UX.

    struct RawReceipt {
        bytes32 blockHash;
        bytes blockNumber;
        address contractAddress;
        bytes cumulativeGasUsed;
        bytes effectiveGasPrice;
        address from;
        bytes gasUsed;
        RawReceiptLog[] logs;
        bytes logsBloom;
        bytes status;
        address to;
        bytes32 transactionHash;
        bytes transactionIndex;
    }

    struct Receipt {
        bytes32 blockHash;
        uint256 blockNumber;
        address contractAddress;
        uint256 cumulativeGasUsed;
        uint256 effectiveGasPrice;
        address from;
        uint256 gasUsed;
        ReceiptLog[] logs;
        bytes logsBloom;
        uint256 status;
        address to;
        bytes32 transactionHash;
        uint256 transactionIndex;
    }

    // Data structures to parse the entire broadcast artifact, assuming the
    // transactions conform to EIP1559.

    struct EIP1559ScriptArtifact {
        string[] libraries;
        string path;
        string[] pending;
        Receipt[] receipts;
        uint256 timestamp;
        Tx1559[] transactions;
        TxReturn[] txReturns;
    }

    struct RawEIP1559ScriptArtifact {
        string[] libraries;
        string path;
        string[] pending;
        RawReceipt[] receipts;
        TxReturn[] txReturns;
        uint256 timestamp;
        RawTx1559[] transactions;
    }

    struct RawReceiptLog {
        // json value = address
        address logAddress;
        bytes32 blockHash;
        bytes blockNumber;
        bytes data;
        bytes logIndex;
        bool removed;
        bytes32[] topics;
        bytes32 transactionHash;
        bytes transactionIndex;
        bytes transactionLogIndex;
    }

    struct ReceiptLog {
        // json value = address
        address logAddress;
        bytes32 blockHash;
        uint256 blockNumber;
        bytes data;
        uint256 logIndex;
        bytes32[] topics;
        uint256 transactionIndex;
        uint256 transactionLogIndex;
        bool removed;
    }

    struct TxReturn {
        string internalType;
        string value;
    }

    struct Account {
        address addr;
        uint256 key;
    }

    enum AddressType {
        Payable,
        NonPayable,
        ZeroAddress,
        Precompile,
        ForgeAddress
    }

    // Checks that `addr` is not blacklisted by token contracts that have a blacklist.
    function assumeNotBlacklisted(address token, address addr) internal view virtual {
        // Nothing to check if `token` is not a contract.
        uint256 tokenCodeSize;
        assembly {
            tokenCodeSize := extcodesize(token)
        }
        require(tokenCodeSize > 0, "StdCheats assumeNotBlacklisted(address,address): Token address is not a contract.");

        bool success;
        bytes memory returnData;

        // 4-byte selector for `isBlacklisted(address)`, used by USDC.
        (success, returnData) = token.staticcall(abi.encodeWithSelector(0xfe575a87, addr));
        vm.assume(!success || abi.decode(returnData, (bool)) == false);

        // 4-byte selector for `isBlackListed(address)`, used by USDT.
        (success, returnData) = token.staticcall(abi.encodeWithSelector(0xe47d6060, addr));
        vm.assume(!success || abi.decode(returnData, (bool)) == false);
    }

    // Checks that `addr` is not blacklisted by token contracts that have a blacklist.
    // This is identical to `assumeNotBlacklisted(address,address)` but with a different name, for
    // backwards compatibility, since this name was used in the original PR which already has
    // a release. This function can be removed in a future release once we want a breaking change.
    function assumeNoBlacklisted(address token, address addr) internal view virtual {
        assumeNotBlacklisted(token, addr);
    }

    function assumeAddressIsNot(address addr, AddressType addressType) internal virtual {
        if (addressType == AddressType.Payable) {
            assumeNotPayable(addr);
        } else if (addressType == AddressType.NonPayable) {
            assumePayable(addr);
        } else if (addressType == AddressType.ZeroAddress) {
            assumeNotZeroAddress(addr);
        } else if (addressType == AddressType.Precompile) {
            assumeNotPrecompile(addr);
        } else if (addressType == AddressType.ForgeAddress) {
            assumeNotForgeAddress(addr);
        }
    }

    function assumeAddressIsNot(address addr, AddressType addressType1, AddressType addressType2) internal virtual {
        assumeAddressIsNot(addr, addressType1);
        assumeAddressIsNot(addr, addressType2);
    }

    function assumeAddressIsNot(
        address addr,
        AddressType addressType1,
        AddressType addressType2,
        AddressType addressType3
    ) internal virtual {
        assumeAddressIsNot(addr, addressType1);
        assumeAddressIsNot(addr, addressType2);
        assumeAddressIsNot(addr, addressType3);
    }

    function assumeAddressIsNot(
        address addr,
        AddressType addressType1,
        AddressType addressType2,
        AddressType addressType3,
        AddressType addressType4
    ) internal virtual {
        assumeAddressIsNot(addr, addressType1);
        assumeAddressIsNot(addr, addressType2);
        assumeAddressIsNot(addr, addressType3);
        assumeAddressIsNot(addr, addressType4);
    }

    // This function checks whether an address, `addr`, is payable. It works by sending 1 wei to
    // `addr` and checking the `success` return value.
    // NOTE: This function may result in state changes depending on the fallback/receive logic
    // implemented by `addr`, which should be taken into account when this function is used.
    function _isPayable(address addr) private returns (bool) {
        require(
            addr.balance < UINT256_MAX,
            "StdCheats _isPayable(address): Balance equals max uint256, so it cannot receive any more funds"
        );
        uint256 origBalanceTest = address(this).balance;
        uint256 origBalanceAddr = address(addr).balance;

        vm.deal(address(this), 1);
        (bool success,) = payable(addr).call{value: 1}("");

        // reset balances
        vm.deal(address(this), origBalanceTest);
        vm.deal(addr, origBalanceAddr);

        return success;
    }

    // NOTE: This function may result in state changes depending on the fallback/receive logic
    // implemented by `addr`, which should be taken into account when this function is used. See the
    // `_isPayable` method for more information.
    function assumePayable(address addr) internal virtual {
        vm.assume(_isPayable(addr));
    }

    function assumeNotPayable(address addr) internal virtual {
        vm.assume(!_isPayable(addr));
    }

    function assumeNotZeroAddress(address addr) internal pure virtual {
        vm.assume(addr != address(0));
    }

    function assumeNotPrecompile(address addr) internal pure virtual {
        assumeNotPrecompile(addr, _pureChainId());
    }

    function assumeNotPrecompile(address addr, uint256 chainId) internal pure virtual {
        // Note: For some chains like Optimism these are technically predeploys (i.e. bytecode placed at a specific
        // address), but the same rationale for excluding them applies so we include those too.

        // These are reserved by Ethereum and may be on all EVM-compatible chains.
        vm.assume(addr < address(0x1) || addr > address(0xff));

        // forgefmt: disable-start
        if (chainId == 10 || chainId == 420) {
            // https://github.com/ethereum-optimism/optimism/blob/eaa371a0184b56b7ca6d9eb9cb0a2b78b2ccd864/op-bindings/predeploys/addresses.go#L6-L21
            vm.assume(addr < address(0x4200000000000000000000000000000000000000) || addr > address(0x4200000000000000000000000000000000000800));
        } else if (chainId == 42161 || chainId == 421613) {
            // https://developer.arbitrum.io/useful-addresses#arbitrum-precompiles-l2-same-on-all-arb-chains
            vm.assume(addr < address(0x0000000000000000000000000000000000000064) || addr > address(0x0000000000000000000000000000000000000068));
        } else if (chainId == 43114 || chainId == 43113) {
            // https://github.com/ava-labs/subnet-evm/blob/47c03fd007ecaa6de2c52ea081596e0a88401f58/precompile/params.go#L18-L59
            vm.assume(addr < address(0x0100000000000000000000000000000000000000) || addr > address(0x01000000000000000000000000000000000000ff));
            vm.assume(addr < address(0x0200000000000000000000000000000000000000) || addr > address(0x02000000000000000000000000000000000000FF));
            vm.assume(addr < address(0x0300000000000000000000000000000000000000) || addr > address(0x03000000000000000000000000000000000000Ff));
        }
        // forgefmt: disable-end
    }

    function assumeNotForgeAddress(address addr) internal pure virtual {
        // vm, console, and Create2Deployer addresses
        vm.assume(
            addr != address(vm) && addr != 0x000000000000000000636F6e736F6c652e6c6f67
                && addr != 0x4e59b44847b379578588920cA78FbF26c0B4956C
        );
    }

    function readEIP1559ScriptArtifact(string memory path)
        internal
        view
        virtual
        returns (EIP1559ScriptArtifact memory)
    {
        string memory data = vm.readFile(path);
        bytes memory parsedData = vm.parseJson(data);
        RawEIP1559ScriptArtifact memory rawArtifact = abi.decode(parsedData, (RawEIP1559ScriptArtifact));
        EIP1559ScriptArtifact memory artifact;
        artifact.libraries = rawArtifact.libraries;
        artifact.path = rawArtifact.path;
        artifact.timestamp = rawArtifact.timestamp;
        artifact.pending = rawArtifact.pending;
        artifact.txReturns = rawArtifact.txReturns;
        artifact.receipts = rawToConvertedReceipts(rawArtifact.receipts);
        artifact.transactions = rawToConvertedEIPTx1559s(rawArtifact.transactions);
        return artifact;
    }

    function rawToConvertedEIPTx1559s(RawTx1559[] memory rawTxs) internal pure virtual returns (Tx1559[] memory) {
        Tx1559[] memory txs = new Tx1559[](rawTxs.length);
        for (uint256 i; i < rawTxs.length; i++) {
            txs[i] = rawToConvertedEIPTx1559(rawTxs[i]);
        }
        return txs;
    }

    function rawToConvertedEIPTx1559(RawTx1559 memory rawTx) internal pure virtual returns (Tx1559 memory) {
        Tx1559 memory transaction;
        transaction.arguments = rawTx.arguments;
        transaction.contractName = rawTx.contractName;
        transaction.functionSig = rawTx.functionSig;
        transaction.hash = rawTx.hash;
        transaction.txDetail = rawToConvertedEIP1559Detail(rawTx.txDetail);
        transaction.opcode = rawTx.opcode;
        return transaction;
    }

    function rawToConvertedEIP1559Detail(RawTx1559Detail memory rawDetail)
        internal
        pure
        virtual
        returns (Tx1559Detail memory)
    {
        Tx1559Detail memory txDetail;
        txDetail.data = rawDetail.data;
        txDetail.from = rawDetail.from;
        txDetail.to = rawDetail.to;
        txDetail.nonce = _bytesToUint(rawDetail.nonce);
        txDetail.txType = _bytesToUint(rawDetail.txType);
        txDetail.value = _bytesToUint(rawDetail.value);
        txDetail.gas = _bytesToUint(rawDetail.gas);
        txDetail.accessList = rawDetail.accessList;
        return txDetail;
    }

    function readTx1559s(string memory path) internal view virtual returns (Tx1559[] memory) {
        string memory deployData = vm.readFile(path);
        bytes memory parsedDeployData = vm.parseJson(deployData, ".transactions");
        RawTx1559[] memory rawTxs = abi.decode(parsedDeployData, (RawTx1559[]));
        return rawToConvertedEIPTx1559s(rawTxs);
    }

    function readTx1559(string memory path, uint256 index) internal view virtual returns (Tx1559 memory) {
        string memory deployData = vm.readFile(path);
        string memory key = string(abi.encodePacked(".transactions[", vm.toString(index), "]"));
        bytes memory parsedDeployData = vm.parseJson(deployData, key);
        RawTx1559 memory rawTx = abi.decode(parsedDeployData, (RawTx1559));
        return rawToConvertedEIPTx1559(rawTx);
    }

    // Analogous to readTransactions, but for receipts.
    function readReceipts(string memory path) internal view virtual returns (Receipt[] memory) {
        string memory deployData = vm.readFile(path);
        bytes memory parsedDeployData = vm.parseJson(deployData, ".receipts");
        RawReceipt[] memory rawReceipts = abi.decode(parsedDeployData, (RawReceipt[]));
        return rawToConvertedReceipts(rawReceipts);
    }

    function readReceipt(string memory path, uint256 index) internal view virtual returns (Receipt memory) {
        string memory deployData = vm.readFile(path);
        string memory key = string(abi.encodePacked(".receipts[", vm.toString(index), "]"));
        bytes memory parsedDeployData = vm.parseJson(deployData, key);
        RawReceipt memory rawReceipt = abi.decode(parsedDeployData, (RawReceipt));
        return rawToConvertedReceipt(rawReceipt);
    }

    function rawToConvertedReceipts(RawReceipt[] memory rawReceipts) internal pure virtual returns (Receipt[] memory) {
        Receipt[] memory receipts = new Receipt[](rawReceipts.length);
        for (uint256 i; i < rawReceipts.length; i++) {
            receipts[i] = rawToConvertedReceipt(rawReceipts[i]);
        }
        return receipts;
    }

    function rawToConvertedReceipt(RawReceipt memory rawReceipt) internal pure virtual returns (Receipt memory) {
        Receipt memory receipt;
        receipt.blockHash = rawReceipt.blockHash;
        receipt.to = rawReceipt.to;
        receipt.from = rawReceipt.from;
        receipt.contractAddress = rawReceipt.contractAddress;
        receipt.effectiveGasPrice = _bytesToUint(rawReceipt.effectiveGasPrice);
        receipt.cumulativeGasUsed = _bytesToUint(rawReceipt.cumulativeGasUsed);
        receipt.gasUsed = _bytesToUint(rawReceipt.gasUsed);
        receipt.status = _bytesToUint(rawReceipt.status);
        receipt.transactionIndex = _bytesToUint(rawReceipt.transactionIndex);
        receipt.blockNumber = _bytesToUint(rawReceipt.blockNumber);
        receipt.logs = rawToConvertedReceiptLogs(rawReceipt.logs);
        receipt.logsBloom = rawReceipt.logsBloom;
        receipt.transactionHash = rawReceipt.transactionHash;
        return receipt;
    }

    function rawToConvertedReceiptLogs(RawReceiptLog[] memory rawLogs)
        internal
        pure
        virtual
        returns (ReceiptLog[] memory)
    {
        ReceiptLog[] memory logs = new ReceiptLog[](rawLogs.length);
        for (uint256 i; i < rawLogs.length; i++) {
            logs[i].logAddress = rawLogs[i].logAddress;
            logs[i].blockHash = rawLogs[i].blockHash;
            logs[i].blockNumber = _bytesToUint(rawLogs[i].blockNumber);
            logs[i].data = rawLogs[i].data;
            logs[i].logIndex = _bytesToUint(rawLogs[i].logIndex);
            logs[i].topics = rawLogs[i].topics;
            logs[i].transactionIndex = _bytesToUint(rawLogs[i].transactionIndex);
            logs[i].transactionLogIndex = _bytesToUint(rawLogs[i].transactionLogIndex);
            logs[i].removed = rawLogs[i].removed;
        }
        return logs;
    }

    // Deploy a contract by fetching the contract bytecode from
    // the artifacts directory
    // e.g. `deployCode(code, abi.encode(arg1,arg2,arg3))`
    function deployCode(string memory what, bytes memory args) internal virtual returns (address addr) {
        bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
        /// @solidity memory-safe-assembly
        assembly {
            addr := create(0, add(bytecode, 0x20), mload(bytecode))
        }

        require(addr != address(0), "StdCheats deployCode(string,bytes): Deployment failed.");
    }

    function deployCode(string memory what) internal virtual returns (address addr) {
        bytes memory bytecode = vm.getCode(what);
        /// @solidity memory-safe-assembly
        assembly {
            addr := create(0, add(bytecode, 0x20), mload(bytecode))
        }

        require(addr != address(0), "StdCheats deployCode(string): Deployment failed.");
    }

    /// @dev deploy contract with value on construction
    function deployCode(string memory what, bytes memory args, uint256 val) internal virtual returns (address addr) {
        bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
        /// @solidity memory-safe-assembly
        assembly {
            addr := create(val, add(bytecode, 0x20), mload(bytecode))
        }

        require(addr != address(0), "StdCheats deployCode(string,bytes,uint256): Deployment failed.");
    }

    function deployCode(string memory what, uint256 val) internal virtual returns (address addr) {
        bytes memory bytecode = vm.getCode(what);
        /// @solidity memory-safe-assembly
        assembly {
            addr := create(val, add(bytecode, 0x20), mload(bytecode))
        }

        require(addr != address(0), "StdCheats deployCode(string,uint256): Deployment failed.");
    }

    // creates a labeled address and the corresponding private key
    function makeAddrAndKey(string memory name) internal virtual returns (address addr, uint256 privateKey) {
        privateKey = uint256(keccak256(abi.encodePacked(name)));
        addr = vm.addr(privateKey);
        vm.label(addr, name);
    }

    // creates a labeled address
    function makeAddr(string memory name) internal virtual returns (address addr) {
        (addr,) = makeAddrAndKey(name);
    }

    // Destroys an account immediately, sending the balance to beneficiary.
    // Destroying means: balance will be zero, code will be empty, and nonce will be 0
    // This is similar to selfdestruct but not identical: selfdestruct destroys code and nonce
    // only after tx ends, this will run immediately.
    function destroyAccount(address who, address beneficiary) internal virtual {
        uint256 currBalance = who.balance;
        vm.etch(who, abi.encode());
        vm.deal(who, 0);
        vm.resetNonce(who);

        uint256 beneficiaryBalance = beneficiary.balance;
        vm.deal(beneficiary, currBalance + beneficiaryBalance);
    }

    // creates a struct containing both a labeled address and the corresponding private key
    function makeAccount(string memory name) internal virtual returns (Account memory account) {
        (account.addr, account.key) = makeAddrAndKey(name);
    }

    function deriveRememberKey(string memory mnemonic, uint32 index)
        internal
        virtual
        returns (address who, uint256 privateKey)
    {
        privateKey = vm.deriveKey(mnemonic, index);
        who = vm.rememberKey(privateKey);
    }

    function _bytesToUint(bytes memory b) private pure returns (uint256) {
        require(b.length <= 32, "StdCheats _bytesToUint(bytes): Bytes length exceeds 32.");
        return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
    }

    function isFork() internal view virtual returns (bool status) {
        try vm.activeFork() {
            status = true;
        } catch (bytes memory) {}
    }

    modifier skipWhenForking() {
        if (!isFork()) {
            _;
        }
    }

    modifier skipWhenNotForking() {
        if (isFork()) {
            _;
        }
    }

    modifier noGasMetering() {
        vm.pauseGasMetering();
        // To prevent turning gas monitoring back on with nested functions that use this modifier,
        // we check if gasMetering started in the off position. If it did, we don't want to turn
        // it back on until we exit the top level function that used the modifier
        //
        // i.e. funcA() noGasMetering { funcB() }, where funcB has noGasMetering as well.
        // funcA will have `gasStartedOff` as false, funcB will have it as true,
        // so we only turn metering back on at the end of the funcA
        bool gasStartedOff = gasMeteringOff;
        gasMeteringOff = true;

        _;

        // if gas metering was on when this modifier was called, turn it back on at the end
        if (!gasStartedOff) {
            gasMeteringOff = false;
            vm.resumeGasMetering();
        }
    }

    // We use this complex approach of `_viewChainId` and `_pureChainId` to ensure there are no
    // compiler warnings when accessing chain ID in any solidity version supported by forge-std. We
    // can't simply access the chain ID in a normal view or pure function because the solc View Pure
    // Checker changed `chainid` from pure to view in 0.8.0.
    function _viewChainId() private view returns (uint256 chainId) {
        // Assembly required since `block.chainid` was introduced in 0.8.0.
        assembly {
            chainId := chainid()
        }

        address(this); // Silence warnings in older Solc versions.
    }

    function _pureChainId() private pure returns (uint256 chainId) {
        function() internal view returns (uint256) fnIn = _viewChainId;
        function() internal pure returns (uint256) pureChainId;
        assembly {
            pureChainId := fnIn
        }
        chainId = pureChainId();
    }
}

// Wrappers around cheatcodes to avoid footguns
abstract contract StdCheats is StdCheatsSafe {
    using stdStorage for StdStorage;

    StdStorage private stdstore;
    Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
    address private constant CONSOLE2_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67;

    // Skip forward or rewind time by the specified number of seconds
    function skip(uint256 time) internal virtual {
        vm.warp(block.timestamp + time);
    }

    function rewind(uint256 time) internal virtual {
        vm.warp(block.timestamp - time);
    }

    // Setup a prank from an address that has some ether
    function hoax(address msgSender) internal virtual {
        vm.deal(msgSender, 1 << 128);
        vm.prank(msgSender);
    }

    function hoax(address msgSender, uint256 give) internal virtual {
        vm.deal(msgSender, give);
        vm.prank(msgSender);
    }

    function hoax(address msgSender, address origin) internal virtual {
        vm.deal(msgSender, 1 << 128);
        vm.prank(msgSender, origin);
    }

    function hoax(address msgSender, address origin, uint256 give) internal virtual {
        vm.deal(msgSender, give);
        vm.prank(msgSender, origin);
    }

    // Start perpetual prank from an address that has some ether
    function startHoax(address msgSender) internal virtual {
        vm.deal(msgSender, 1 << 128);
        vm.startPrank(msgSender);
    }

    function startHoax(address msgSender, uint256 give) internal virtual {
        vm.deal(msgSender, give);
        vm.startPrank(msgSender);
    }

    // Start perpetual prank from an address that has some ether
    // tx.origin is set to the origin parameter
    function startHoax(address msgSender, address origin) internal virtual {
        vm.deal(msgSender, 1 << 128);
        vm.startPrank(msgSender, origin);
    }

    function startHoax(address msgSender, address origin, uint256 give) internal virtual {
        vm.deal(msgSender, give);
        vm.startPrank(msgSender, origin);
    }

    function changePrank(address msgSender) internal virtual {
        console2_log_StdCheats("changePrank is deprecated. Please use vm.startPrank instead.");
        vm.stopPrank();
        vm.startPrank(msgSender);
    }

    function changePrank(address msgSender, address txOrigin) internal virtual {
        vm.stopPrank();
        vm.startPrank(msgSender, txOrigin);
    }

    // The same as Vm's `deal`
    // Use the alternative signature for ERC20 tokens
    function deal(address to, uint256 give) internal virtual {
        vm.deal(to, give);
    }

    // Set the balance of an account for any ERC20 token
    // Use the alternative signature to update `totalSupply`
    function deal(address token, address to, uint256 give) internal virtual {
        deal(token, to, give, false);
    }

    // Set the balance of an account for any ERC1155 token
    // Use the alternative signature to update `totalSupply`
    function dealERC1155(address token, address to, uint256 id, uint256 give) internal virtual {
        dealERC1155(token, to, id, give, false);
    }

    function deal(address token, address to, uint256 give, bool adjust) internal virtual {
        // get current balance
        (, bytes memory balData) = token.staticcall(abi.encodeWithSelector(0x70a08231, to));
        uint256 prevBal = abi.decode(balData, (uint256));

        // update balance
        stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(give);

        // update total supply
        if (adjust) {
            (, bytes memory totSupData) = token.staticcall(abi.encodeWithSelector(0x18160ddd));
            uint256 totSup = abi.decode(totSupData, (uint256));
            if (give < prevBal) {
                totSup -= (prevBal - give);
            } else {
                totSup += (give - prevBal);
            }
            stdstore.target(token).sig(0x18160ddd).checked_write(totSup);
        }
    }

    function dealERC1155(address token, address to, uint256 id, uint256 give, bool adjust) internal virtual {
        // get current balance
        (, bytes memory balData) = token.staticcall(abi.encodeWithSelector(0x00fdd58e, to, id));
        uint256 prevBal = abi.decode(balData, (uint256));

        // update balance
        stdstore.target(token).sig(0x00fdd58e).with_key(to).with_key(id).checked_write(give);

        // update total supply
        if (adjust) {
            (, bytes memory totSupData) = token.staticcall(abi.encodeWithSelector(0xbd85b039, id));
            require(
                totSupData.length != 0,
                "StdCheats deal(address,address,uint,uint,bool): target contract is not ERC1155Supply."
            );
            uint256 totSup = abi.decode(totSupData, (uint256));
            if (give < prevBal) {
                totSup -= (prevBal - give);
            } else {
                totSup += (give - prevBal);
            }
            stdstore.target(token).sig(0xbd85b039).with_key(id).checked_write(totSup);
        }
    }

    function dealERC721(address token, address to, uint256 id) internal virtual {
        // check if token id is already minted and the actual owner.
        (bool successMinted, bytes memory ownerData) = token.staticcall(abi.encodeWithSelector(0x6352211e, id));
        require(successMinted, "StdCheats deal(address,address,uint,bool): id not minted.");

        // get owner current balance
        (, bytes memory fromBalData) =
            token.staticcall(abi.encodeWithSelector(0x70a08231, abi.decode(ownerData, (address))));
        uint256 fromPrevBal = abi.decode(fromBalData, (uint256));

        // get new user current balance
        (, bytes memory toBalData) = token.staticcall(abi.encodeWithSelector(0x70a08231, to));
        uint256 toPrevBal = abi.decode(toBalData, (uint256));

        // update balances
        stdstore.target(token).sig(0x70a08231).with_key(abi.decode(ownerData, (address))).checked_write(--fromPrevBal);
        stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(++toPrevBal);

        // update owner
        stdstore.target(token).sig(0x6352211e).with_key(id).checked_write(to);
    }

    function deployCodeTo(string memory what, address where) internal virtual {
        deployCodeTo(what, "", 0, where);
    }

    function deployCodeTo(string memory what, bytes memory args, address where) internal virtual {
        deployCodeTo(what, args, 0, where);
    }

    function deployCodeTo(string memory what, bytes memory args, uint256 value, address where) internal virtual {
        bytes memory creationCode = vm.getCode(what);
        vm.etch(where, abi.encodePacked(creationCode, args));
        (bool success, bytes memory runtimeBytecode) = where.call{value: value}("");
        require(success, "StdCheats deployCodeTo(string,bytes,uint256,address): Failed to create runtime bytecode.");
        vm.etch(where, runtimeBytecode);
    }

    // Used to prevent the compilation of console, which shortens the compilation time when console is not used elsewhere.
    function console2_log_StdCheats(string memory p0) private view {
        (bool status,) = address(CONSOLE2_ADDRESS).staticcall(abi.encodeWithSignature("log(string)", p0));
        status;
    }
}

File 40 of 57 : StdError.sol
// SPDX-License-Identifier: MIT
// Panics work for versions >=0.8.0, but we lowered the pragma to make this compatible with Test
pragma solidity >=0.6.2 <0.9.0;

library stdError {
    bytes public constant assertionError = abi.encodeWithSignature("Panic(uint256)", 0x01);
    bytes public constant arithmeticError = abi.encodeWithSignature("Panic(uint256)", 0x11);
    bytes public constant divisionError = abi.encodeWithSignature("Panic(uint256)", 0x12);
    bytes public constant enumConversionError = abi.encodeWithSignature("Panic(uint256)", 0x21);
    bytes public constant encodeStorageError = abi.encodeWithSignature("Panic(uint256)", 0x22);
    bytes public constant popError = abi.encodeWithSignature("Panic(uint256)", 0x31);
    bytes public constant indexOOBError = abi.encodeWithSignature("Panic(uint256)", 0x32);
    bytes public constant memOverflowError = abi.encodeWithSignature("Panic(uint256)", 0x41);
    bytes public constant zeroVarError = abi.encodeWithSignature("Panic(uint256)", 0x51);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

pragma experimental ABIEncoderV2;

abstract contract StdInvariant {
    struct FuzzSelector {
        address addr;
        bytes4[] selectors;
    }

    struct FuzzArtifactSelector {
        string artifact;
        bytes4[] selectors;
    }

    struct FuzzInterface {
        address addr;
        string[] artifacts;
    }

    address[] private _excludedContracts;
    address[] private _excludedSenders;
    address[] private _targetedContracts;
    address[] private _targetedSenders;

    string[] private _excludedArtifacts;
    string[] private _targetedArtifacts;

    FuzzArtifactSelector[] private _targetedArtifactSelectors;

    FuzzSelector[] private _excludedSelectors;
    FuzzSelector[] private _targetedSelectors;

    FuzzInterface[] private _targetedInterfaces;

    // Functions for users:
    // These are intended to be called in tests.

    function excludeContract(address newExcludedContract_) internal {
        _excludedContracts.push(newExcludedContract_);
    }

    function excludeSelector(FuzzSelector memory newExcludedSelector_) internal {
        _excludedSelectors.push(newExcludedSelector_);
    }

    function excludeSender(address newExcludedSender_) internal {
        _excludedSenders.push(newExcludedSender_);
    }

    function excludeArtifact(string memory newExcludedArtifact_) internal {
        _excludedArtifacts.push(newExcludedArtifact_);
    }

    function targetArtifact(string memory newTargetedArtifact_) internal {
        _targetedArtifacts.push(newTargetedArtifact_);
    }

    function targetArtifactSelector(FuzzArtifactSelector memory newTargetedArtifactSelector_) internal {
        _targetedArtifactSelectors.push(newTargetedArtifactSelector_);
    }

    function targetContract(address newTargetedContract_) internal {
        _targetedContracts.push(newTargetedContract_);
    }

    function targetSelector(FuzzSelector memory newTargetedSelector_) internal {
        _targetedSelectors.push(newTargetedSelector_);
    }

    function targetSender(address newTargetedSender_) internal {
        _targetedSenders.push(newTargetedSender_);
    }

    function targetInterface(FuzzInterface memory newTargetedInterface_) internal {
        _targetedInterfaces.push(newTargetedInterface_);
    }

    // Functions for forge:
    // These are called by forge to run invariant tests and don't need to be called in tests.

    function excludeArtifacts() public view returns (string[] memory excludedArtifacts_) {
        excludedArtifacts_ = _excludedArtifacts;
    }

    function excludeContracts() public view returns (address[] memory excludedContracts_) {
        excludedContracts_ = _excludedContracts;
    }

    function excludeSelectors() public view returns (FuzzSelector[] memory excludedSelectors_) {
        excludedSelectors_ = _excludedSelectors;
    }

    function excludeSenders() public view returns (address[] memory excludedSenders_) {
        excludedSenders_ = _excludedSenders;
    }

    function targetArtifacts() public view returns (string[] memory targetedArtifacts_) {
        targetedArtifacts_ = _targetedArtifacts;
    }

    function targetArtifactSelectors() public view returns (FuzzArtifactSelector[] memory targetedArtifactSelectors_) {
        targetedArtifactSelectors_ = _targetedArtifactSelectors;
    }

    function targetContracts() public view returns (address[] memory targetedContracts_) {
        targetedContracts_ = _targetedContracts;
    }

    function targetSelectors() public view returns (FuzzSelector[] memory targetedSelectors_) {
        targetedSelectors_ = _targetedSelectors;
    }

    function targetSenders() public view returns (address[] memory targetedSenders_) {
        targetedSenders_ = _targetedSenders;
    }

    function targetInterfaces() public view returns (FuzzInterface[] memory targetedInterfaces_) {
        targetedInterfaces_ = _targetedInterfaces;
    }
}

File 42 of 57 : StdJson.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;

pragma experimental ABIEncoderV2;

import {VmSafe} from "./Vm.sol";

// Helpers for parsing and writing JSON files
// To parse:
// ```
// using stdJson for string;
// string memory json = vm.readFile("<some_path>");
// json.readUint("<json_path>");
// ```
// To write:
// ```
// using stdJson for string;
// string memory json = "json";
// json.serialize("a", uint256(123));
// string memory semiFinal = json.serialize("b", string("test"));
// string memory finalJson = json.serialize("c", semiFinal);
// finalJson.write("<some_path>");
// ```

library stdJson {
    VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));

    function keyExists(string memory json, string memory key) internal view returns (bool) {
        return vm.keyExistsJson(json, key);
    }

    function parseRaw(string memory json, string memory key) internal pure returns (bytes memory) {
        return vm.parseJson(json, key);
    }

    function readUint(string memory json, string memory key) internal pure returns (uint256) {
        return vm.parseJsonUint(json, key);
    }

    function readUintArray(string memory json, string memory key) internal pure returns (uint256[] memory) {
        return vm.parseJsonUintArray(json, key);
    }

    function readInt(string memory json, string memory key) internal pure returns (int256) {
        return vm.parseJsonInt(json, key);
    }

    function readIntArray(string memory json, string memory key) internal pure returns (int256[] memory) {
        return vm.parseJsonIntArray(json, key);
    }

    function readBytes32(string memory json, string memory key) internal pure returns (bytes32) {
        return vm.parseJsonBytes32(json, key);
    }

    function readBytes32Array(string memory json, string memory key) internal pure returns (bytes32[] memory) {
        return vm.parseJsonBytes32Array(json, key);
    }

    function readString(string memory json, string memory key) internal pure returns (string memory) {
        return vm.parseJsonString(json, key);
    }

    function readStringArray(string memory json, string memory key) internal pure returns (string[] memory) {
        return vm.parseJsonStringArray(json, key);
    }

    function readAddress(string memory json, string memory key) internal pure returns (address) {
        return vm.parseJsonAddress(json, key);
    }

    function readAddressArray(string memory json, string memory key) internal pure returns (address[] memory) {
        return vm.parseJsonAddressArray(json, key);
    }

    function readBool(string memory json, string memory key) internal pure returns (bool) {
        return vm.parseJsonBool(json, key);
    }

    function readBoolArray(string memory json, string memory key) internal pure returns (bool[] memory) {
        return vm.parseJsonBoolArray(json, key);
    }

    function readBytes(string memory json, string memory key) internal pure returns (bytes memory) {
        return vm.parseJsonBytes(json, key);
    }

    function readBytesArray(string memory json, string memory key) internal pure returns (bytes[] memory) {
        return vm.parseJsonBytesArray(json, key);
    }

    function readUintOr(string memory json, string memory key, uint256 defaultValue) internal view returns (uint256) {
        return keyExists(json, key) ? readUint(json, key) : defaultValue;
    }

    function readUintArrayOr(string memory json, string memory key, uint256[] memory defaultValue)
        internal
        view
        returns (uint256[] memory)
    {
        return keyExists(json, key) ? readUintArray(json, key) : defaultValue;
    }

    function readIntOr(string memory json, string memory key, int256 defaultValue) internal view returns (int256) {
        return keyExists(json, key) ? readInt(json, key) : defaultValue;
    }

    function readIntArrayOr(string memory json, string memory key, int256[] memory defaultValue)
        internal
        view
        returns (int256[] memory)
    {
        return keyExists(json, key) ? readIntArray(json, key) : defaultValue;
    }

    function readBytes32Or(string memory json, string memory key, bytes32 defaultValue)
        internal
        view
        returns (bytes32)
    {
        return keyExists(json, key) ? readBytes32(json, key) : defaultValue;
    }

    function readBytes32ArrayOr(string memory json, string memory key, bytes32[] memory defaultValue)
        internal
        view
        returns (bytes32[] memory)
    {
        return keyExists(json, key) ? readBytes32Array(json, key) : defaultValue;
    }

    function readStringOr(string memory json, string memory key, string memory defaultValue)
        internal
        view
        returns (string memory)
    {
        return keyExists(json, key) ? readString(json, key) : defaultValue;
    }

    function readStringArrayOr(string memory json, string memory key, string[] memory defaultValue)
        internal
        view
        returns (string[] memory)
    {
        return keyExists(json, key) ? readStringArray(json, key) : defaultValue;
    }

    function readAddressOr(string memory json, string memory key, address defaultValue)
        internal
        view
        returns (address)
    {
        return keyExists(json, key) ? readAddress(json, key) : defaultValue;
    }

    function readAddressArrayOr(string memory json, string memory key, address[] memory defaultValue)
        internal
        view
        returns (address[] memory)
    {
        return keyExists(json, key) ? readAddressArray(json, key) : defaultValue;
    }

    function readBoolOr(string memory json, string memory key, bool defaultValue) internal view returns (bool) {
        return keyExists(json, key) ? readBool(json, key) : defaultValue;
    }

    function readBoolArrayOr(string memory json, string memory key, bool[] memory defaultValue)
        internal
        view
        returns (bool[] memory)
    {
        return keyExists(json, key) ? readBoolArray(json, key) : defaultValue;
    }

    function readBytesOr(string memory json, string memory key, bytes memory defaultValue)
        internal
        view
        returns (bytes memory)
    {
        return keyExists(json, key) ? readBytes(json, key) : defaultValue;
    }

    function readBytesArrayOr(string memory json, string memory key, bytes[] memory defaultValue)
        internal
        view
        returns (bytes[] memory)
    {
        return keyExists(json, key) ? readBytesArray(json, key) : defaultValue;
    }

    function serialize(string memory jsonKey, string memory rootObject) internal returns (string memory) {
        return vm.serializeJson(jsonKey, rootObject);
    }

    function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) {
        return vm.serializeBool(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bool[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBool(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) {
        return vm.serializeUint(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, uint256[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeUint(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) {
        return vm.serializeInt(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, int256[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeInt(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) {
        return vm.serializeAddress(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, address[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeAddress(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) {
        return vm.serializeBytes32(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes32[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBytes32(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) {
        return vm.serializeBytes(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBytes(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, string memory value)
        internal
        returns (string memory)
    {
        return vm.serializeString(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, string[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeString(jsonKey, key, value);
    }

    function write(string memory jsonKey, string memory path) internal {
        vm.writeJson(jsonKey, path);
    }

    function write(string memory jsonKey, string memory path, string memory valueKey) internal {
        vm.writeJson(jsonKey, path, valueKey);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

library stdMath {
    int256 private constant INT256_MIN = -57896044618658097711785492504343953926634992332820282019728792003956564819968;

    function abs(int256 a) internal pure returns (uint256) {
        // Required or it will fail when `a = type(int256).min`
        if (a == INT256_MIN) {
            return 57896044618658097711785492504343953926634992332820282019728792003956564819968;
        }

        return uint256(a > 0 ? a : -a);
    }

    function delta(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a - b : b - a;
    }

    function delta(int256 a, int256 b) internal pure returns (uint256) {
        // a and b are of the same sign
        // this works thanks to two's complement, the left-most bit is the sign bit
        if ((a ^ b) > -1) {
            return delta(abs(a), abs(b));
        }

        // a and b are of opposite signs
        return abs(a) + abs(b);
    }

    function percentDelta(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 absDelta = delta(a, b);

        return absDelta * 1e18 / b;
    }

    function percentDelta(int256 a, int256 b) internal pure returns (uint256) {
        uint256 absDelta = delta(a, b);
        uint256 absB = abs(b);

        return absDelta * 1e18 / absB;
    }
}

File 44 of 57 : StdStorage.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

import {Vm} from "./Vm.sol";

struct FindData {
    uint256 slot;
    uint256 offsetLeft;
    uint256 offsetRight;
    bool found;
}

struct StdStorage {
    mapping(address => mapping(bytes4 => mapping(bytes32 => FindData))) finds;
    bytes32[] _keys;
    bytes4 _sig;
    uint256 _depth;
    address _target;
    bytes32 _set;
    bool _enable_packed_slots;
    bytes _calldata;
}

library stdStorageSafe {
    event SlotFound(address who, bytes4 fsig, bytes32 keysHash, uint256 slot);
    event WARNING_UninitedSlot(address who, uint256 slot);

    Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
    uint256 constant UINT256_MAX = 115792089237316195423570985008687907853269984665640564039457584007913129639935;

    function sigs(string memory sigStr) internal pure returns (bytes4) {
        return bytes4(keccak256(bytes(sigStr)));
    }

    function getCallParams(StdStorage storage self) internal view returns (bytes memory) {
        if (self._calldata.length == 0) {
            return flatten(self._keys);
        } else {
            return self._calldata;
        }
    }

    // Calls target contract with configured parameters
    function callTarget(StdStorage storage self) internal view returns (bool, bytes32) {
        bytes memory cald = abi.encodePacked(self._sig, getCallParams(self));
        (bool success, bytes memory rdat) = self._target.staticcall(cald);
        bytes32 result = bytesToBytes32(rdat, 32 * self._depth);

        return (success, result);
    }

    // Tries mutating slot value to determine if the targeted value is stored in it.
    // If current value is 0, then we are setting slot value to type(uint256).max
    // Otherwise, we set it to 0. That way, return value should always be affected.
    function checkSlotMutatesCall(StdStorage storage self, bytes32 slot) internal returns (bool) {
        bytes32 prevSlotValue = vm.load(self._target, slot);
        (bool success, bytes32 prevReturnValue) = callTarget(self);

        bytes32 testVal = prevReturnValue == bytes32(0) ? bytes32(UINT256_MAX) : bytes32(0);
        vm.store(self._target, slot, testVal);

        (, bytes32 newReturnValue) = callTarget(self);

        vm.store(self._target, slot, prevSlotValue);

        return (success && (prevReturnValue != newReturnValue));
    }

    // Tries setting one of the bits in slot to 1 until return value changes.
    // Index of resulted bit is an offset packed slot has from left/right side
    function findOffset(StdStorage storage self, bytes32 slot, bool left) internal returns (bool, uint256) {
        for (uint256 offset = 0; offset < 256; offset++) {
            uint256 valueToPut = left ? (1 << (255 - offset)) : (1 << offset);
            vm.store(self._target, slot, bytes32(valueToPut));

            (bool success, bytes32 data) = callTarget(self);

            if (success && (uint256(data) > 0)) {
                return (true, offset);
            }
        }
        return (false, 0);
    }

    function findOffsets(StdStorage storage self, bytes32 slot) internal returns (bool, uint256, uint256) {
        bytes32 prevSlotValue = vm.load(self._target, slot);

        (bool foundLeft, uint256 offsetLeft) = findOffset(self, slot, true);
        (bool foundRight, uint256 offsetRight) = findOffset(self, slot, false);

        // `findOffset` may mutate slot value, so we are setting it to initial value
        vm.store(self._target, slot, prevSlotValue);
        return (foundLeft && foundRight, offsetLeft, offsetRight);
    }

    function find(StdStorage storage self) internal returns (FindData storage) {
        return find(self, true);
    }

    /// @notice find an arbitrary storage slot given a function sig, input data, address of the contract and a value to check against
    // slot complexity:
    //  if flat, will be bytes32(uint256(uint));
    //  if map, will be keccak256(abi.encode(key, uint(slot)));
    //  if deep map, will be keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))));
    //  if map struct, will be bytes32(uint256(keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))))) + structFieldDepth);
    function find(StdStorage storage self, bool _clear) internal returns (FindData storage) {
        address who = self._target;
        bytes4 fsig = self._sig;
        uint256 field_depth = self._depth;
        bytes memory params = getCallParams(self);

        // calldata to test against
        if (self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found) {
            if (_clear) {
                clear(self);
            }
            return self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
        }
        vm.record();
        (, bytes32 callResult) = callTarget(self);
        (bytes32[] memory reads,) = vm.accesses(address(who));

        if (reads.length == 0) {
            revert("stdStorage find(StdStorage): No storage use detected for target.");
        } else {
            for (uint256 i = reads.length; --i >= 0;) {
                bytes32 prev = vm.load(who, reads[i]);
                if (prev == bytes32(0)) {
                    emit WARNING_UninitedSlot(who, uint256(reads[i]));
                }

                if (!checkSlotMutatesCall(self, reads[i])) {
                    continue;
                }

                (uint256 offsetLeft, uint256 offsetRight) = (0, 0);

                if (self._enable_packed_slots) {
                    bool found;
                    (found, offsetLeft, offsetRight) = findOffsets(self, reads[i]);
                    if (!found) {
                        continue;
                    }
                }

                // Check that value between found offsets is equal to the current call result
                uint256 curVal = (uint256(prev) & getMaskByOffsets(offsetLeft, offsetRight)) >> offsetRight;

                if (uint256(callResult) != curVal) {
                    continue;
                }

                emit SlotFound(who, fsig, keccak256(abi.encodePacked(params, field_depth)), uint256(reads[i]));
                self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))] =
                    FindData(uint256(reads[i]), offsetLeft, offsetRight, true);
                break;
            }
        }

        require(
            self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found,
            "stdStorage find(StdStorage): Slot(s) not found."
        );

        if (_clear) {
            clear(self);
        }
        return self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
    }

    function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
        self._target = _target;
        return self;
    }

    function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
        self._sig = _sig;
        return self;
    }

    function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
        self._sig = sigs(_sig);
        return self;
    }

    function with_calldata(StdStorage storage self, bytes memory _calldata) internal returns (StdStorage storage) {
        self._calldata = _calldata;
        return self;
    }

    function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
        self._keys.push(bytes32(uint256(uint160(who))));
        return self;
    }

    function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
        self._keys.push(bytes32(amt));
        return self;
    }

    function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
        self._keys.push(key);
        return self;
    }

    function enable_packed_slots(StdStorage storage self) internal returns (StdStorage storage) {
        self._enable_packed_slots = true;
        return self;
    }

    function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
        self._depth = _depth;
        return self;
    }

    function read(StdStorage storage self) private returns (bytes memory) {
        FindData storage data = find(self, false);
        uint256 mask = getMaskByOffsets(data.offsetLeft, data.offsetRight);
        uint256 value = (uint256(vm.load(self._target, bytes32(data.slot))) & mask) >> data.offsetRight;
        clear(self);
        return abi.encode(value);
    }

    function read_bytes32(StdStorage storage self) internal returns (bytes32) {
        return abi.decode(read(self), (bytes32));
    }

    function read_bool(StdStorage storage self) internal returns (bool) {
        int256 v = read_int(self);
        if (v == 0) return false;
        if (v == 1) return true;
        revert("stdStorage read_bool(StdStorage): Cannot decode. Make sure you are reading a bool.");
    }

    function read_address(StdStorage storage self) internal returns (address) {
        return abi.decode(read(self), (address));
    }

    function read_uint(StdStorage storage self) internal returns (uint256) {
        return abi.decode(read(self), (uint256));
    }

    function read_int(StdStorage storage self) internal returns (int256) {
        return abi.decode(read(self), (int256));
    }

    function parent(StdStorage storage self) internal returns (uint256, bytes32) {
        address who = self._target;
        uint256 field_depth = self._depth;
        vm.startMappingRecording();
        uint256 child = find(self, true).slot - field_depth;
        (bool found, bytes32 key, bytes32 parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(child));
        if (!found) {
            revert(
                "stdStorage read_bool(StdStorage): Cannot find parent. Make sure you give a slot and startMappingRecording() has been called."
            );
        }
        return (uint256(parent_slot), key);
    }

    function root(StdStorage storage self) internal returns (uint256) {
        address who = self._target;
        uint256 field_depth = self._depth;
        vm.startMappingRecording();
        uint256 child = find(self, true).slot - field_depth;
        bool found;
        bytes32 root_slot;
        bytes32 parent_slot;
        (found,, parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(child));
        if (!found) {
            revert(
                "stdStorage read_bool(StdStorage): Cannot find parent. Make sure you give a slot and startMappingRecording() has been called."
            );
        }
        while (found) {
            root_slot = parent_slot;
            (found,, parent_slot) = vm.getMappingKeyAndParentOf(who, bytes32(root_slot));
        }
        return uint256(root_slot);
    }

    function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) {
        bytes32 out;

        uint256 max = b.length > 32 ? 32 : b.length;
        for (uint256 i = 0; i < max; i++) {
            out |= bytes32(b[offset + i] & 0xFF) >> (i * 8);
        }
        return out;
    }

    function flatten(bytes32[] memory b) private pure returns (bytes memory) {
        bytes memory result = new bytes(b.length * 32);
        for (uint256 i = 0; i < b.length; i++) {
            bytes32 k = b[i];
            /// @solidity memory-safe-assembly
            assembly {
                mstore(add(result, add(32, mul(32, i))), k)
            }
        }

        return result;
    }

    function clear(StdStorage storage self) internal {
        delete self._target;
        delete self._sig;
        delete self._keys;
        delete self._depth;
        delete self._enable_packed_slots;
        delete self._calldata;
    }

    // Returns mask which contains non-zero bits for values between `offsetLeft` and `offsetRight`
    // (slotValue & mask) >> offsetRight will be the value of the given packed variable
    function getMaskByOffsets(uint256 offsetLeft, uint256 offsetRight) internal pure returns (uint256 mask) {
        // mask = ((1 << (256 - (offsetRight + offsetLeft))) - 1) << offsetRight;
        // using assembly because (1 << 256) causes overflow
        assembly {
            mask := shl(offsetRight, sub(shl(sub(256, add(offsetRight, offsetLeft)), 1), 1))
        }
    }

    // Returns slot value with updated packed variable.
    function getUpdatedSlotValue(bytes32 curValue, uint256 varValue, uint256 offsetLeft, uint256 offsetRight)
        internal
        pure
        returns (bytes32 newValue)
    {
        return bytes32((uint256(curValue) & ~getMaskByOffsets(offsetLeft, offsetRight)) | (varValue << offsetRight));
    }
}

library stdStorage {
    Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));

    function sigs(string memory sigStr) internal pure returns (bytes4) {
        return stdStorageSafe.sigs(sigStr);
    }

    function find(StdStorage storage self) internal returns (uint256) {
        return find(self, true);
    }

    function find(StdStorage storage self, bool _clear) internal returns (uint256) {
        return stdStorageSafe.find(self, _clear).slot;
    }

    function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
        return stdStorageSafe.target(self, _target);
    }

    function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
        return stdStorageSafe.sig(self, _sig);
    }

    function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
        return stdStorageSafe.sig(self, _sig);
    }

    function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
        return stdStorageSafe.with_key(self, who);
    }

    function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
        return stdStorageSafe.with_key(self, amt);
    }

    function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
        return stdStorageSafe.with_key(self, key);
    }

    function with_calldata(StdStorage storage self, bytes memory _calldata) internal returns (StdStorage storage) {
        return stdStorageSafe.with_calldata(self, _calldata);
    }

    function enable_packed_slots(StdStorage storage self) internal returns (StdStorage storage) {
        return stdStorageSafe.enable_packed_slots(self);
    }

    function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
        return stdStorageSafe.depth(self, _depth);
    }

    function clear(StdStorage storage self) internal {
        stdStorageSafe.clear(self);
    }

    function checked_write(StdStorage storage self, address who) internal {
        checked_write(self, bytes32(uint256(uint160(who))));
    }

    function checked_write(StdStorage storage self, uint256 amt) internal {
        checked_write(self, bytes32(amt));
    }

    function checked_write_int(StdStorage storage self, int256 val) internal {
        checked_write(self, bytes32(uint256(val)));
    }

    function checked_write(StdStorage storage self, bool write) internal {
        bytes32 t;
        /// @solidity memory-safe-assembly
        assembly {
            t := write
        }
        checked_write(self, t);
    }

    function checked_write(StdStorage storage self, bytes32 set) internal {
        address who = self._target;
        bytes4 fsig = self._sig;
        uint256 field_depth = self._depth;
        bytes memory params = stdStorageSafe.getCallParams(self);

        if (!self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))].found) {
            find(self, false);
        }
        FindData storage data = self.finds[who][fsig][keccak256(abi.encodePacked(params, field_depth))];
        if ((data.offsetLeft + data.offsetRight) > 0) {
            uint256 maxVal = 2 ** (256 - (data.offsetLeft + data.offsetRight));
            require(
                uint256(set) < maxVal,
                string(
                    abi.encodePacked(
                        "stdStorage find(StdStorage): Packed slot. We can't fit value greater than ",
                        vm.toString(maxVal)
                    )
                )
            );
        }
        bytes32 curVal = vm.load(who, bytes32(data.slot));
        bytes32 valToSet = stdStorageSafe.getUpdatedSlotValue(curVal, uint256(set), data.offsetLeft, data.offsetRight);

        vm.store(who, bytes32(data.slot), valToSet);

        (bool success, bytes32 callResult) = stdStorageSafe.callTarget(self);

        if (!success || callResult != set) {
            vm.store(who, bytes32(data.slot), curVal);
            revert("stdStorage find(StdStorage): Failed to write value.");
        }
        clear(self);
    }

    function read_bytes32(StdStorage storage self) internal returns (bytes32) {
        return stdStorageSafe.read_bytes32(self);
    }

    function read_bool(StdStorage storage self) internal returns (bool) {
        return stdStorageSafe.read_bool(self);
    }

    function read_address(StdStorage storage self) internal returns (address) {
        return stdStorageSafe.read_address(self);
    }

    function read_uint(StdStorage storage self) internal returns (uint256) {
        return stdStorageSafe.read_uint(self);
    }

    function read_int(StdStorage storage self) internal returns (int256) {
        return stdStorageSafe.read_int(self);
    }

    function parent(StdStorage storage self) internal returns (uint256, bytes32) {
        return stdStorageSafe.parent(self);
    }

    function root(StdStorage storage self) internal returns (uint256) {
        return stdStorageSafe.root(self);
    }
}

File 45 of 57 : StdStyle.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;

import {VmSafe} from "./Vm.sol";

library StdStyle {
    VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));

    string constant RED = "\u001b[91m";
    string constant GREEN = "\u001b[92m";
    string constant YELLOW = "\u001b[93m";
    string constant BLUE = "\u001b[94m";
    string constant MAGENTA = "\u001b[95m";
    string constant CYAN = "\u001b[96m";
    string constant BOLD = "\u001b[1m";
    string constant DIM = "\u001b[2m";
    string constant ITALIC = "\u001b[3m";
    string constant UNDERLINE = "\u001b[4m";
    string constant INVERSE = "\u001b[7m";
    string constant RESET = "\u001b[0m";

    function styleConcat(string memory style, string memory self) private pure returns (string memory) {
        return string(abi.encodePacked(style, self, RESET));
    }

    function red(string memory self) internal pure returns (string memory) {
        return styleConcat(RED, self);
    }

    function red(uint256 self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function red(int256 self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function red(address self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function red(bool self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function redBytes(bytes memory self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function redBytes32(bytes32 self) internal pure returns (string memory) {
        return red(vm.toString(self));
    }

    function green(string memory self) internal pure returns (string memory) {
        return styleConcat(GREEN, self);
    }

    function green(uint256 self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function green(int256 self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function green(address self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function green(bool self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function greenBytes(bytes memory self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function greenBytes32(bytes32 self) internal pure returns (string memory) {
        return green(vm.toString(self));
    }

    function yellow(string memory self) internal pure returns (string memory) {
        return styleConcat(YELLOW, self);
    }

    function yellow(uint256 self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function yellow(int256 self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function yellow(address self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function yellow(bool self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function yellowBytes(bytes memory self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function yellowBytes32(bytes32 self) internal pure returns (string memory) {
        return yellow(vm.toString(self));
    }

    function blue(string memory self) internal pure returns (string memory) {
        return styleConcat(BLUE, self);
    }

    function blue(uint256 self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function blue(int256 self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function blue(address self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function blue(bool self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function blueBytes(bytes memory self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function blueBytes32(bytes32 self) internal pure returns (string memory) {
        return blue(vm.toString(self));
    }

    function magenta(string memory self) internal pure returns (string memory) {
        return styleConcat(MAGENTA, self);
    }

    function magenta(uint256 self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function magenta(int256 self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function magenta(address self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function magenta(bool self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function magentaBytes(bytes memory self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function magentaBytes32(bytes32 self) internal pure returns (string memory) {
        return magenta(vm.toString(self));
    }

    function cyan(string memory self) internal pure returns (string memory) {
        return styleConcat(CYAN, self);
    }

    function cyan(uint256 self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function cyan(int256 self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function cyan(address self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function cyan(bool self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function cyanBytes(bytes memory self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function cyanBytes32(bytes32 self) internal pure returns (string memory) {
        return cyan(vm.toString(self));
    }

    function bold(string memory self) internal pure returns (string memory) {
        return styleConcat(BOLD, self);
    }

    function bold(uint256 self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function bold(int256 self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function bold(address self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function bold(bool self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function boldBytes(bytes memory self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function boldBytes32(bytes32 self) internal pure returns (string memory) {
        return bold(vm.toString(self));
    }

    function dim(string memory self) internal pure returns (string memory) {
        return styleConcat(DIM, self);
    }

    function dim(uint256 self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function dim(int256 self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function dim(address self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function dim(bool self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function dimBytes(bytes memory self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function dimBytes32(bytes32 self) internal pure returns (string memory) {
        return dim(vm.toString(self));
    }

    function italic(string memory self) internal pure returns (string memory) {
        return styleConcat(ITALIC, self);
    }

    function italic(uint256 self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function italic(int256 self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function italic(address self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function italic(bool self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function italicBytes(bytes memory self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function italicBytes32(bytes32 self) internal pure returns (string memory) {
        return italic(vm.toString(self));
    }

    function underline(string memory self) internal pure returns (string memory) {
        return styleConcat(UNDERLINE, self);
    }

    function underline(uint256 self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function underline(int256 self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function underline(address self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function underline(bool self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function underlineBytes(bytes memory self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function underlineBytes32(bytes32 self) internal pure returns (string memory) {
        return underline(vm.toString(self));
    }

    function inverse(string memory self) internal pure returns (string memory) {
        return styleConcat(INVERSE, self);
    }

    function inverse(uint256 self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }

    function inverse(int256 self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }

    function inverse(address self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }

    function inverse(bool self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }

    function inverseBytes(bytes memory self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }

    function inverseBytes32(bytes32 self) internal pure returns (string memory) {
        return inverse(vm.toString(self));
    }
}

File 46 of 57 : StdToml.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;

pragma experimental ABIEncoderV2;

import {VmSafe} from "./Vm.sol";

// Helpers for parsing and writing TOML files
// To parse:
// ```
// using stdToml for string;
// string memory toml = vm.readFile("<some_path>");
// toml.readUint("<json_path>");
// ```
// To write:
// ```
// using stdToml for string;
// string memory json = "json";
// json.serialize("a", uint256(123));
// string memory semiFinal = json.serialize("b", string("test"));
// string memory finalJson = json.serialize("c", semiFinal);
// finalJson.write("<some_path>");
// ```

library stdToml {
    VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));

    function keyExists(string memory toml, string memory key) internal view returns (bool) {
        return vm.keyExistsToml(toml, key);
    }

    function parseRaw(string memory toml, string memory key) internal pure returns (bytes memory) {
        return vm.parseToml(toml, key);
    }

    function readUint(string memory toml, string memory key) internal pure returns (uint256) {
        return vm.parseTomlUint(toml, key);
    }

    function readUintArray(string memory toml, string memory key) internal pure returns (uint256[] memory) {
        return vm.parseTomlUintArray(toml, key);
    }

    function readInt(string memory toml, string memory key) internal pure returns (int256) {
        return vm.parseTomlInt(toml, key);
    }

    function readIntArray(string memory toml, string memory key) internal pure returns (int256[] memory) {
        return vm.parseTomlIntArray(toml, key);
    }

    function readBytes32(string memory toml, string memory key) internal pure returns (bytes32) {
        return vm.parseTomlBytes32(toml, key);
    }

    function readBytes32Array(string memory toml, string memory key) internal pure returns (bytes32[] memory) {
        return vm.parseTomlBytes32Array(toml, key);
    }

    function readString(string memory toml, string memory key) internal pure returns (string memory) {
        return vm.parseTomlString(toml, key);
    }

    function readStringArray(string memory toml, string memory key) internal pure returns (string[] memory) {
        return vm.parseTomlStringArray(toml, key);
    }

    function readAddress(string memory toml, string memory key) internal pure returns (address) {
        return vm.parseTomlAddress(toml, key);
    }

    function readAddressArray(string memory toml, string memory key) internal pure returns (address[] memory) {
        return vm.parseTomlAddressArray(toml, key);
    }

    function readBool(string memory toml, string memory key) internal pure returns (bool) {
        return vm.parseTomlBool(toml, key);
    }

    function readBoolArray(string memory toml, string memory key) internal pure returns (bool[] memory) {
        return vm.parseTomlBoolArray(toml, key);
    }

    function readBytes(string memory toml, string memory key) internal pure returns (bytes memory) {
        return vm.parseTomlBytes(toml, key);
    }

    function readBytesArray(string memory toml, string memory key) internal pure returns (bytes[] memory) {
        return vm.parseTomlBytesArray(toml, key);
    }

    function readUintOr(string memory toml, string memory key, uint256 defaultValue) internal view returns (uint256) {
        return keyExists(toml, key) ? readUint(toml, key) : defaultValue;
    }

    function readUintArrayOr(string memory toml, string memory key, uint256[] memory defaultValue)
        internal
        view
        returns (uint256[] memory)
    {
        return keyExists(toml, key) ? readUintArray(toml, key) : defaultValue;
    }

    function readIntOr(string memory toml, string memory key, int256 defaultValue) internal view returns (int256) {
        return keyExists(toml, key) ? readInt(toml, key) : defaultValue;
    }

    function readIntArrayOr(string memory toml, string memory key, int256[] memory defaultValue)
        internal
        view
        returns (int256[] memory)
    {
        return keyExists(toml, key) ? readIntArray(toml, key) : defaultValue;
    }

    function readBytes32Or(string memory toml, string memory key, bytes32 defaultValue)
        internal
        view
        returns (bytes32)
    {
        return keyExists(toml, key) ? readBytes32(toml, key) : defaultValue;
    }

    function readBytes32ArrayOr(string memory toml, string memory key, bytes32[] memory defaultValue)
        internal
        view
        returns (bytes32[] memory)
    {
        return keyExists(toml, key) ? readBytes32Array(toml, key) : defaultValue;
    }

    function readStringOr(string memory toml, string memory key, string memory defaultValue)
        internal
        view
        returns (string memory)
    {
        return keyExists(toml, key) ? readString(toml, key) : defaultValue;
    }

    function readStringArrayOr(string memory toml, string memory key, string[] memory defaultValue)
        internal
        view
        returns (string[] memory)
    {
        return keyExists(toml, key) ? readStringArray(toml, key) : defaultValue;
    }

    function readAddressOr(string memory toml, string memory key, address defaultValue)
        internal
        view
        returns (address)
    {
        return keyExists(toml, key) ? readAddress(toml, key) : defaultValue;
    }

    function readAddressArrayOr(string memory toml, string memory key, address[] memory defaultValue)
        internal
        view
        returns (address[] memory)
    {
        return keyExists(toml, key) ? readAddressArray(toml, key) : defaultValue;
    }

    function readBoolOr(string memory toml, string memory key, bool defaultValue) internal view returns (bool) {
        return keyExists(toml, key) ? readBool(toml, key) : defaultValue;
    }

    function readBoolArrayOr(string memory toml, string memory key, bool[] memory defaultValue)
        internal
        view
        returns (bool[] memory)
    {
        return keyExists(toml, key) ? readBoolArray(toml, key) : defaultValue;
    }

    function readBytesOr(string memory toml, string memory key, bytes memory defaultValue)
        internal
        view
        returns (bytes memory)
    {
        return keyExists(toml, key) ? readBytes(toml, key) : defaultValue;
    }

    function readBytesArrayOr(string memory toml, string memory key, bytes[] memory defaultValue)
        internal
        view
        returns (bytes[] memory)
    {
        return keyExists(toml, key) ? readBytesArray(toml, key) : defaultValue;
    }

    function serialize(string memory jsonKey, string memory rootObject) internal returns (string memory) {
        return vm.serializeJson(jsonKey, rootObject);
    }

    function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) {
        return vm.serializeBool(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bool[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBool(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) {
        return vm.serializeUint(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, uint256[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeUint(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) {
        return vm.serializeInt(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, int256[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeInt(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) {
        return vm.serializeAddress(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, address[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeAddress(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) {
        return vm.serializeBytes32(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes32[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBytes32(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) {
        return vm.serializeBytes(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, bytes[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeBytes(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, string memory value)
        internal
        returns (string memory)
    {
        return vm.serializeString(jsonKey, key, value);
    }

    function serialize(string memory jsonKey, string memory key, string[] memory value)
        internal
        returns (string memory)
    {
        return vm.serializeString(jsonKey, key, value);
    }

    function write(string memory jsonKey, string memory path) internal {
        vm.writeToml(jsonKey, path);
    }

    function write(string memory jsonKey, string memory path, string memory valueKey) internal {
        vm.writeToml(jsonKey, path, valueKey);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

pragma experimental ABIEncoderV2;

import {IMulticall3} from "./interfaces/IMulticall3.sol";
import {MockERC20} from "./mocks/MockERC20.sol";
import {MockERC721} from "./mocks/MockERC721.sol";
import {VmSafe} from "./Vm.sol";

abstract contract StdUtils {
    /*//////////////////////////////////////////////////////////////////////////
                                     CONSTANTS
    //////////////////////////////////////////////////////////////////////////*/

    IMulticall3 private constant multicall = IMulticall3(0xcA11bde05977b3631167028862bE2a173976CA11);
    VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
    address private constant CONSOLE2_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67;
    uint256 private constant INT256_MIN_ABS =
        57896044618658097711785492504343953926634992332820282019728792003956564819968;
    uint256 private constant SECP256K1_ORDER =
        115792089237316195423570985008687907852837564279074904382605163141518161494337;
    uint256 private constant UINT256_MAX =
        115792089237316195423570985008687907853269984665640564039457584007913129639935;

    // Used by default when deploying with create2, https://github.com/Arachnid/deterministic-deployment-proxy.
    address private constant CREATE2_FACTORY = 0x4e59b44847b379578588920cA78FbF26c0B4956C;

    /*//////////////////////////////////////////////////////////////////////////
                                 INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    function _bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) {
        require(min <= max, "StdUtils bound(uint256,uint256,uint256): Max is less than min.");
        // If x is between min and max, return x directly. This is to ensure that dictionary values
        // do not get shifted if the min is nonzero. More info: https://github.com/foundry-rs/forge-std/issues/188
        if (x >= min && x <= max) return x;

        uint256 size = max - min + 1;

        // If the value is 0, 1, 2, 3, wrap that to min, min+1, min+2, min+3. Similarly for the UINT256_MAX side.
        // This helps ensure coverage of the min/max values.
        if (x <= 3 && size > x) return min + x;
        if (x >= UINT256_MAX - 3 && size > UINT256_MAX - x) return max - (UINT256_MAX - x);

        // Otherwise, wrap x into the range [min, max], i.e. the range is inclusive.
        if (x > max) {
            uint256 diff = x - max;
            uint256 rem = diff % size;
            if (rem == 0) return max;
            result = min + rem - 1;
        } else if (x < min) {
            uint256 diff = min - x;
            uint256 rem = diff % size;
            if (rem == 0) return min;
            result = max - rem + 1;
        }
    }

    function bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) {
        result = _bound(x, min, max);
        console2_log_StdUtils("Bound result", result);
    }

    function _bound(int256 x, int256 min, int256 max) internal pure virtual returns (int256 result) {
        require(min <= max, "StdUtils bound(int256,int256,int256): Max is less than min.");

        // Shifting all int256 values to uint256 to use _bound function. The range of two types are:
        // int256 : -(2**255) ~ (2**255 - 1)
        // uint256:     0     ~ (2**256 - 1)
        // So, add 2**255, INT256_MIN_ABS to the integer values.
        //
        // If the given integer value is -2**255, we cannot use `-uint256(-x)` because of the overflow.
        // So, use `~uint256(x) + 1` instead.
        uint256 _x = x < 0 ? (INT256_MIN_ABS - ~uint256(x) - 1) : (uint256(x) + INT256_MIN_ABS);
        uint256 _min = min < 0 ? (INT256_MIN_ABS - ~uint256(min) - 1) : (uint256(min) + INT256_MIN_ABS);
        uint256 _max = max < 0 ? (INT256_MIN_ABS - ~uint256(max) - 1) : (uint256(max) + INT256_MIN_ABS);

        uint256 y = _bound(_x, _min, _max);

        // To move it back to int256 value, subtract INT256_MIN_ABS at here.
        result = y < INT256_MIN_ABS ? int256(~(INT256_MIN_ABS - y) + 1) : int256(y - INT256_MIN_ABS);
    }

    function bound(int256 x, int256 min, int256 max) internal pure virtual returns (int256 result) {
        result = _bound(x, min, max);
        console2_log_StdUtils("Bound result", vm.toString(result));
    }

    function boundPrivateKey(uint256 privateKey) internal pure virtual returns (uint256 result) {
        result = _bound(privateKey, 1, SECP256K1_ORDER - 1);
    }

    function bytesToUint(bytes memory b) internal pure virtual returns (uint256) {
        require(b.length <= 32, "StdUtils bytesToUint(bytes): Bytes length exceeds 32.");
        return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
    }

    /// @dev Compute the address a contract will be deployed at for a given deployer address and nonce
    /// @notice adapted from Solmate implementation (https://github.com/Rari-Capital/solmate/blob/main/src/utils/LibRLP.sol)
    function computeCreateAddress(address deployer, uint256 nonce) internal pure virtual returns (address) {
        console2_log_StdUtils("computeCreateAddress is deprecated. Please use vm.computeCreateAddress instead.");
        return vm.computeCreateAddress(deployer, nonce);
    }

    function computeCreate2Address(bytes32 salt, bytes32 initcodeHash, address deployer)
        internal
        pure
        virtual
        returns (address)
    {
        console2_log_StdUtils("computeCreate2Address is deprecated. Please use vm.computeCreate2Address instead.");
        return vm.computeCreate2Address(salt, initcodeHash, deployer);
    }

    /// @dev returns the address of a contract created with CREATE2 using the default CREATE2 deployer
    function computeCreate2Address(bytes32 salt, bytes32 initCodeHash) internal pure returns (address) {
        console2_log_StdUtils("computeCreate2Address is deprecated. Please use vm.computeCreate2Address instead.");
        return vm.computeCreate2Address(salt, initCodeHash);
    }

    /// @dev returns an initialized mock ERC20 contract
    function deployMockERC20(string memory name, string memory symbol, uint8 decimals)
        internal
        returns (MockERC20 mock)
    {
        mock = new MockERC20();
        mock.initialize(name, symbol, decimals);
    }

    /// @dev returns an initialized mock ERC721 contract
    function deployMockERC721(string memory name, string memory symbol) internal returns (MockERC721 mock) {
        mock = new MockERC721();
        mock.initialize(name, symbol);
    }

    /// @dev returns the hash of the init code (creation code + no args) used in CREATE2 with no constructor arguments
    /// @param creationCode the creation code of a contract C, as returned by type(C).creationCode
    function hashInitCode(bytes memory creationCode) internal pure returns (bytes32) {
        return hashInitCode(creationCode, "");
    }

    /// @dev returns the hash of the init code (creation code + ABI-encoded args) used in CREATE2
    /// @param creationCode the creation code of a contract C, as returned by type(C).creationCode
    /// @param args the ABI-encoded arguments to the constructor of C
    function hashInitCode(bytes memory creationCode, bytes memory args) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(creationCode, args));
    }

    // Performs a single call with Multicall3 to query the ERC-20 token balances of the given addresses.
    function getTokenBalances(address token, address[] memory addresses)
        internal
        virtual
        returns (uint256[] memory balances)
    {
        uint256 tokenCodeSize;
        assembly {
            tokenCodeSize := extcodesize(token)
        }
        require(tokenCodeSize > 0, "StdUtils getTokenBalances(address,address[]): Token address is not a contract.");

        // ABI encode the aggregate call to Multicall3.
        uint256 length = addresses.length;
        IMulticall3.Call[] memory calls = new IMulticall3.Call[](length);
        for (uint256 i = 0; i < length; ++i) {
            // 0x70a08231 = bytes4("balanceOf(address)"))
            calls[i] = IMulticall3.Call({target: token, callData: abi.encodeWithSelector(0x70a08231, (addresses[i]))});
        }

        // Make the aggregate call.
        (, bytes[] memory returnData) = multicall.aggregate(calls);

        // ABI decode the return data and return the balances.
        balances = new uint256[](length);
        for (uint256 i = 0; i < length; ++i) {
            balances[i] = abi.decode(returnData[i], (uint256));
        }
    }

    /*//////////////////////////////////////////////////////////////////////////
                                 PRIVATE FUNCTIONS
    //////////////////////////////////////////////////////////////////////////*/

    function addressFromLast20Bytes(bytes32 bytesValue) private pure returns (address) {
        return address(uint160(uint256(bytesValue)));
    }

    // This section is used to prevent the compilation of console, which shortens the compilation time when console is
    // not used elsewhere. We also trick the compiler into letting us make the console log methods as `pure` to avoid
    // any breaking changes to function signatures.
    function _castLogPayloadViewToPure(function(bytes memory) internal view fnIn)
        internal
        pure
        returns (function(bytes memory) internal pure fnOut)
    {
        assembly {
            fnOut := fnIn
        }
    }

    function _sendLogPayload(bytes memory payload) internal pure {
        _castLogPayloadViewToPure(_sendLogPayloadView)(payload);
    }

    function _sendLogPayloadView(bytes memory payload) private view {
        uint256 payloadLength = payload.length;
        address consoleAddress = CONSOLE2_ADDRESS;
        /// @solidity memory-safe-assembly
        assembly {
            let payloadStart := add(payload, 32)
            let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0)
        }
    }

    function console2_log_StdUtils(string memory p0) private pure {
        _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
    }

    function console2_log_StdUtils(string memory p0, uint256 p1) private pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1));
    }

    function console2_log_StdUtils(string memory p0, string memory p1) private pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
    }
}

File 48 of 57 : Vm.sol
// Automatically @generated by scripts/vm.py. Do not modify manually.

// SPDX-License-Identifier: MIT OR Apache-2.0
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;

/// The `VmSafe` interface does not allow manipulation of the EVM state or other actions that may
/// result in Script simulations differing from on-chain execution. It is recommended to only use
/// these cheats in scripts.
interface VmSafe {
    /// A modification applied to either `msg.sender` or `tx.origin`. Returned by `readCallers`.
    enum CallerMode {
        // No caller modification is currently active.
        None,
        // A one time broadcast triggered by a `vm.broadcast()` call is currently active.
        Broadcast,
        // A recurrent broadcast triggered by a `vm.startBroadcast()` call is currently active.
        RecurrentBroadcast,
        // A one time prank triggered by a `vm.prank()` call is currently active.
        Prank,
        // A recurrent prank triggered by a `vm.startPrank()` call is currently active.
        RecurrentPrank
    }

    /// The kind of account access that occurred.
    enum AccountAccessKind {
        // The account was called.
        Call,
        // The account was called via delegatecall.
        DelegateCall,
        // The account was called via callcode.
        CallCode,
        // The account was called via staticcall.
        StaticCall,
        // The account was created.
        Create,
        // The account was selfdestructed.
        SelfDestruct,
        // Synthetic access indicating the current context has resumed after a previous sub-context (AccountAccess).
        Resume,
        // The account's balance was read.
        Balance,
        // The account's codesize was read.
        Extcodesize,
        // The account's codehash was read.
        Extcodehash,
        // The account's code was copied.
        Extcodecopy
    }

    /// Forge execution contexts.
    enum ForgeContext {
        // Test group execution context (test, coverage or snapshot).
        TestGroup,
        // `forge test` execution context.
        Test,
        // `forge coverage` execution context.
        Coverage,
        // `forge snapshot` execution context.
        Snapshot,
        // Script group execution context (dry run, broadcast or resume).
        ScriptGroup,
        // `forge script` execution context.
        ScriptDryRun,
        // `forge script --broadcast` execution context.
        ScriptBroadcast,
        // `forge script --resume` execution context.
        ScriptResume,
        // Unknown `forge` execution context.
        Unknown
    }

    /// An Ethereum log. Returned by `getRecordedLogs`.
    struct Log {
        // The topics of the log, including the signature, if any.
        bytes32[] topics;
        // The raw data of the log.
        bytes data;
        // The address of the log's emitter.
        address emitter;
    }

    /// An RPC URL and its alias. Returned by `rpcUrlStructs`.
    struct Rpc {
        // The alias of the RPC URL.
        string key;
        // The RPC URL.
        string url;
    }

    /// An RPC log object. Returned by `eth_getLogs`.
    struct EthGetLogs {
        // The address of the log's emitter.
        address emitter;
        // The topics of the log, including the signature, if any.
        bytes32[] topics;
        // The raw data of the log.
        bytes data;
        // The block hash.
        bytes32 blockHash;
        // The block number.
        uint64 blockNumber;
        // The transaction hash.
        bytes32 transactionHash;
        // The transaction index in the block.
        uint64 transactionIndex;
        // The log index.
        uint256 logIndex;
        // Whether the log was removed.
        bool removed;
    }

    /// A single entry in a directory listing. Returned by `readDir`.
    struct DirEntry {
        // The error message, if any.
        string errorMessage;
        // The path of the entry.
        string path;
        // The depth of the entry.
        uint64 depth;
        // Whether the entry is a directory.
        bool isDir;
        // Whether the entry is a symlink.
        bool isSymlink;
    }

    /// Metadata information about a file.
    /// This structure is returned from the `fsMetadata` function and represents known
    /// metadata about a file such as its permissions, size, modification
    /// times, etc.
    struct FsMetadata {
        // True if this metadata is for a directory.
        bool isDir;
        // True if this metadata is for a symlink.
        bool isSymlink;
        // The size of the file, in bytes, this metadata is for.
        uint256 length;
        // True if this metadata is for a readonly (unwritable) file.
        bool readOnly;
        // The last modification time listed in this metadata.
        uint256 modified;
        // The last access time of this metadata.
        uint256 accessed;
        // The creation time listed in this metadata.
        uint256 created;
    }

    /// A wallet with a public and private key.
    struct Wallet {
        // The wallet's address.
        address addr;
        // The wallet's public key `X`.
        uint256 publicKeyX;
        // The wallet's public key `Y`.
        uint256 publicKeyY;
        // The wallet's private key.
        uint256 privateKey;
    }

    /// The result of a `tryFfi` call.
    struct FfiResult {
        // The exit code of the call.
        int32 exitCode;
        // The optionally hex-decoded `stdout` data.
        bytes stdout;
        // The `stderr` data.
        bytes stderr;
    }

    /// Information on the chain and fork.
    struct ChainInfo {
        // The fork identifier. Set to zero if no fork is active.
        uint256 forkId;
        // The chain ID of the current fork.
        uint256 chainId;
    }

    /// The result of a `stopAndReturnStateDiff` call.
    struct AccountAccess {
        // The chain and fork the access occurred.
        ChainInfo chainInfo;
        // The kind of account access that determines what the account is.
        // If kind is Call, DelegateCall, StaticCall or CallCode, then the account is the callee.
        // If kind is Create, then the account is the newly created account.
        // If kind is SelfDestruct, then the account is the selfdestruct recipient.
        // If kind is a Resume, then account represents a account context that has resumed.
        AccountAccessKind kind;
        // The account that was accessed.
        // It's either the account created, callee or a selfdestruct recipient for CREATE, CALL or SELFDESTRUCT.
        address account;
        // What accessed the account.
        address accessor;
        // If the account was initialized or empty prior to the access.
        // An account is considered initialized if it has code, a
        // non-zero nonce, or a non-zero balance.
        bool initialized;
        // The previous balance of the accessed account.
        uint256 oldBalance;
        // The potential new balance of the accessed account.
        // That is, all balance changes are recorded here, even if reverts occurred.
        uint256 newBalance;
        // Code of the account deployed by CREATE.
        bytes deployedCode;
        // Value passed along with the account access
        uint256 value;
        // Input data provided to the CREATE or CALL
        bytes data;
        // If this access reverted in either the current or parent context.
        bool reverted;
        // An ordered list of storage accesses made during an account access operation.
        StorageAccess[] storageAccesses;
        // Call depth traversed during the recording of state differences
        uint64 depth;
    }

    /// The storage accessed during an `AccountAccess`.
    struct StorageAccess {
        // The account whose storage was accessed.
        address account;
        // The slot that was accessed.
        bytes32 slot;
        // If the access was a write.
        bool isWrite;
        // The previous value of the slot.
        bytes32 previousValue;
        // The new value of the slot.
        bytes32 newValue;
        // If the access was reverted.
        bool reverted;
    }

    /// Gas used. Returned by `lastCallGas`.
    struct Gas {
        // The gas limit of the call.
        uint64 gasLimit;
        // The total gas used.
        uint64 gasTotalUsed;
        // DEPRECATED: The amount of gas used for memory expansion. Ref: <https://github.com/foundry-rs/foundry/pull/7934#pullrequestreview-2069236939>
        uint64 gasMemoryUsed;
        // The amount of gas refunded.
        int64 gasRefunded;
        // The amount of gas remaining.
        uint64 gasRemaining;
    }

    // ======== Crypto ========

    /// Derives a private key from the name, labels the account with that name, and returns the wallet.
    function createWallet(string calldata walletLabel) external returns (Wallet memory wallet);

    /// Generates a wallet from the private key and returns the wallet.
    function createWallet(uint256 privateKey) external returns (Wallet memory wallet);

    /// Generates a wallet from the private key, labels the account with that name, and returns the wallet.
    function createWallet(uint256 privateKey, string calldata walletLabel) external returns (Wallet memory wallet);

    /// Derive a private key from a provided mnenomic string (or mnenomic file path)
    /// at the derivation path `m/44'/60'/0'/0/{index}`.
    function deriveKey(string calldata mnemonic, uint32 index) external pure returns (uint256 privateKey);

    /// Derive a private key from a provided mnenomic string (or mnenomic file path)
    /// at `{derivationPath}{index}`.
    function deriveKey(string calldata mnemonic, string calldata derivationPath, uint32 index)
        external
        pure
        returns (uint256 privateKey);

    /// Derive a private key from a provided mnenomic string (or mnenomic file path) in the specified language
    /// at the derivation path `m/44'/60'/0'/0/{index}`.
    function deriveKey(string calldata mnemonic, uint32 index, string calldata language)
        external
        pure
        returns (uint256 privateKey);

    /// Derive a private key from a provided mnenomic string (or mnenomic file path) in the specified language
    /// at `{derivationPath}{index}`.
    function deriveKey(string calldata mnemonic, string calldata derivationPath, uint32 index, string calldata language)
        external
        pure
        returns (uint256 privateKey);

    /// Derives secp256r1 public key from the provided `privateKey`.
    function publicKeyP256(uint256 privateKey) external pure returns (uint256 publicKeyX, uint256 publicKeyY);

    /// Adds a private key to the local forge wallet and returns the address.
    function rememberKey(uint256 privateKey) external returns (address keyAddr);

    /// Signs data with a `Wallet`.
    /// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
    /// signature's `s` value, and the recovery id `v` in a single bytes32.
    /// This format reduces the signature size from 65 to 64 bytes.
    function signCompact(Wallet calldata wallet, bytes32 digest) external returns (bytes32 r, bytes32 vs);

    /// Signs `digest` with `privateKey` using the secp256k1 curve.
    /// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
    /// signature's `s` value, and the recovery id `v` in a single bytes32.
    /// This format reduces the signature size from 65 to 64 bytes.
    function signCompact(uint256 privateKey, bytes32 digest) external pure returns (bytes32 r, bytes32 vs);

    /// Signs `digest` with signer provided to script using the secp256k1 curve.
    /// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
    /// signature's `s` value, and the recovery id `v` in a single bytes32.
    /// This format reduces the signature size from 65 to 64 bytes.
    /// If `--sender` is provided, the signer with provided address is used, otherwise,
    /// if exactly one signer is provided to the script, that signer is used.
    /// Raises error if signer passed through `--sender` does not match any unlocked signers or
    /// if `--sender` is not provided and not exactly one signer is passed to the script.
    function signCompact(bytes32 digest) external pure returns (bytes32 r, bytes32 vs);

    /// Signs `digest` with signer provided to script using the secp256k1 curve.
    /// Returns a compact signature (`r`, `vs`) as per EIP-2098, where `vs` encodes both the
    /// signature's `s` value, and the recovery id `v` in a single bytes32.
    /// This format reduces the signature size from 65 to 64 bytes.
    /// Raises error if none of the signers passed into the script have provided address.
    function signCompact(address signer, bytes32 digest) external pure returns (bytes32 r, bytes32 vs);

    /// Signs `digest` with `privateKey` using the secp256r1 curve.
    function signP256(uint256 privateKey, bytes32 digest) external pure returns (bytes32 r, bytes32 s);

    /// Signs data with a `Wallet`.
    function sign(Wallet calldata wallet, bytes32 digest) external returns (uint8 v, bytes32 r, bytes32 s);

    /// Signs `digest` with `privateKey` using the secp256k1 curve.
    function sign(uint256 privateKey, bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);

    /// Signs `digest` with signer provided to script using the secp256k1 curve.
    /// If `--sender` is provided, the signer with provided address is used, otherwise,
    /// if exactly one signer is provided to the script, that signer is used.
    /// Raises error if signer passed through `--sender` does not match any unlocked signers or
    /// if `--sender` is not provided and not exactly one signer is passed to the script.
    function sign(bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);

    /// Signs `digest` with signer provided to script using the secp256k1 curve.
    /// Raises error if none of the signers passed into the script have provided address.
    function sign(address signer, bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s);

    // ======== Environment ========

    /// Gets the environment variable `name` and parses it as `address`.
    /// Reverts if the variable was not found or could not be parsed.
    function envAddress(string calldata name) external view returns (address value);

    /// Gets the environment variable `name` and parses it as an array of `address`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envAddress(string calldata name, string calldata delim) external view returns (address[] memory value);

    /// Gets the environment variable `name` and parses it as `bool`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBool(string calldata name) external view returns (bool value);

    /// Gets the environment variable `name` and parses it as an array of `bool`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBool(string calldata name, string calldata delim) external view returns (bool[] memory value);

    /// Gets the environment variable `name` and parses it as `bytes32`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBytes32(string calldata name) external view returns (bytes32 value);

    /// Gets the environment variable `name` and parses it as an array of `bytes32`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBytes32(string calldata name, string calldata delim) external view returns (bytes32[] memory value);

    /// Gets the environment variable `name` and parses it as `bytes`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBytes(string calldata name) external view returns (bytes memory value);

    /// Gets the environment variable `name` and parses it as an array of `bytes`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envBytes(string calldata name, string calldata delim) external view returns (bytes[] memory value);

    /// Gets the environment variable `name` and returns true if it exists, else returns false.
    function envExists(string calldata name) external view returns (bool result);

    /// Gets the environment variable `name` and parses it as `int256`.
    /// Reverts if the variable was not found or could not be parsed.
    function envInt(string calldata name) external view returns (int256 value);

    /// Gets the environment variable `name` and parses it as an array of `int256`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envInt(string calldata name, string calldata delim) external view returns (int256[] memory value);

    /// Gets the environment variable `name` and parses it as `bool`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, bool defaultValue) external view returns (bool value);

    /// Gets the environment variable `name` and parses it as `uint256`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, uint256 defaultValue) external view returns (uint256 value);

    /// Gets the environment variable `name` and parses it as an array of `address`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, address[] calldata defaultValue)
        external
        view
        returns (address[] memory value);

    /// Gets the environment variable `name` and parses it as an array of `bytes32`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, bytes32[] calldata defaultValue)
        external
        view
        returns (bytes32[] memory value);

    /// Gets the environment variable `name` and parses it as an array of `string`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, string[] calldata defaultValue)
        external
        view
        returns (string[] memory value);

    /// Gets the environment variable `name` and parses it as an array of `bytes`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, bytes[] calldata defaultValue)
        external
        view
        returns (bytes[] memory value);

    /// Gets the environment variable `name` and parses it as `int256`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, int256 defaultValue) external view returns (int256 value);

    /// Gets the environment variable `name` and parses it as `address`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, address defaultValue) external view returns (address value);

    /// Gets the environment variable `name` and parses it as `bytes32`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, bytes32 defaultValue) external view returns (bytes32 value);

    /// Gets the environment variable `name` and parses it as `string`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata defaultValue) external view returns (string memory value);

    /// Gets the environment variable `name` and parses it as `bytes`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, bytes calldata defaultValue) external view returns (bytes memory value);

    /// Gets the environment variable `name` and parses it as an array of `bool`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, bool[] calldata defaultValue)
        external
        view
        returns (bool[] memory value);

    /// Gets the environment variable `name` and parses it as an array of `uint256`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, uint256[] calldata defaultValue)
        external
        view
        returns (uint256[] memory value);

    /// Gets the environment variable `name` and parses it as an array of `int256`, delimited by `delim`.
    /// Reverts if the variable could not be parsed.
    /// Returns `defaultValue` if the variable was not found.
    function envOr(string calldata name, string calldata delim, int256[] calldata defaultValue)
        external
        view
        returns (int256[] memory value);

    /// Gets the environment variable `name` and parses it as `string`.
    /// Reverts if the variable was not found or could not be parsed.
    function envString(string calldata name) external view returns (string memory value);

    /// Gets the environment variable `name` and parses it as an array of `string`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envString(string calldata name, string calldata delim) external view returns (string[] memory value);

    /// Gets the environment variable `name` and parses it as `uint256`.
    /// Reverts if the variable was not found or could not be parsed.
    function envUint(string calldata name) external view returns (uint256 value);

    /// Gets the environment variable `name` and parses it as an array of `uint256`, delimited by `delim`.
    /// Reverts if the variable was not found or could not be parsed.
    function envUint(string calldata name, string calldata delim) external view returns (uint256[] memory value);

    /// Returns true if `forge` command was executed in given context.
    function isContext(ForgeContext context) external view returns (bool result);

    /// Sets environment variables.
    function setEnv(string calldata name, string calldata value) external;

    // ======== EVM ========

    /// Gets all accessed reads and write slot from a `vm.record` session, for a given address.
    function accesses(address target) external returns (bytes32[] memory readSlots, bytes32[] memory writeSlots);

    /// Gets the address for a given private key.
    function addr(uint256 privateKey) external pure returns (address keyAddr);

    /// Gets all the logs according to specified filter.
    function eth_getLogs(uint256 fromBlock, uint256 toBlock, address target, bytes32[] calldata topics)
        external
        returns (EthGetLogs[] memory logs);

    /// Gets the current `block.blobbasefee`.
    /// You should use this instead of `block.blobbasefee` if you use `vm.blobBaseFee`, as `block.blobbasefee` is assumed to be constant across a transaction,
    /// and as a result will get optimized out by the compiler.
    /// See https://github.com/foundry-rs/foundry/issues/6180
    function getBlobBaseFee() external view returns (uint256 blobBaseFee);

    /// Gets the current `block.number`.
    /// You should use this instead of `block.number` if you use `vm.roll`, as `block.number` is assumed to be constant across a transaction,
    /// and as a result will get optimized out by the compiler.
    /// See https://github.com/foundry-rs/foundry/issues/6180
    function getBlockNumber() external view returns (uint256 height);

    /// Gets the current `block.timestamp`.
    /// You should use this instead of `block.timestamp` if you use `vm.warp`, as `block.timestamp` is assumed to be constant across a transaction,
    /// and as a result will get optimized out by the compiler.
    /// See https://github.com/foundry-rs/foundry/issues/6180
    function getBlockTimestamp() external view returns (uint256 timestamp);

    /// Gets the map key and parent of a mapping at a given slot, for a given address.
    function getMappingKeyAndParentOf(address target, bytes32 elementSlot)
        external
        returns (bool found, bytes32 key, bytes32 parent);

    /// Gets the number of elements in the mapping at the given slot, for a given address.
    function getMappingLength(address target, bytes32 mappingSlot) external returns (uint256 length);

    /// Gets the elements at index idx of the mapping at the given slot, for a given address. The
    /// index must be less than the length of the mapping (i.e. the number of keys in the mapping).
    function getMappingSlotAt(address target, bytes32 mappingSlot, uint256 idx) external returns (bytes32 value);

    /// Gets the nonce of an account.
    function getNonce(address account) external view returns (uint64 nonce);

    /// Get the nonce of a `Wallet`.
    function getNonce(Wallet calldata wallet) external returns (uint64 nonce);

    /// Gets all the recorded logs.
    function getRecordedLogs() external returns (Log[] memory logs);

    /// Gets the gas used in the last call.
    function lastCallGas() external view returns (Gas memory gas);

    /// Loads a storage slot from an address.
    function load(address target, bytes32 slot) external view returns (bytes32 data);

    /// Pauses gas metering (i.e. gas usage is not counted). Noop if already paused.
    function pauseGasMetering() external;

    /// Records all storage reads and writes.
    function record() external;

    /// Record all the transaction logs.
    function recordLogs() external;

    /// Reset gas metering (i.e. gas usage is set to gas limit).
    function resetGasMetering() external;

    /// Resumes gas metering (i.e. gas usage is counted again). Noop if already on.
    function resumeGasMetering() external;

    /// Performs an Ethereum JSON-RPC request to the current fork URL.
    function rpc(string calldata method, string calldata params) external returns (bytes memory data);

    /// Performs an Ethereum JSON-RPC request to the given endpoint.
    function rpc(string calldata urlOrAlias, string calldata method, string calldata params)
        external
        returns (bytes memory data);

    /// Starts recording all map SSTOREs for later retrieval.
    function startMappingRecording() external;

    /// Record all account accesses as part of CREATE, CALL or SELFDESTRUCT opcodes in order,
    /// along with the context of the calls
    function startStateDiffRecording() external;

    /// Returns an ordered array of all account accesses from a `vm.startStateDiffRecording` session.
    function stopAndReturnStateDiff() external returns (AccountAccess[] memory accountAccesses);

    /// Stops recording all map SSTOREs for later retrieval and clears the recorded data.
    function stopMappingRecording() external;

    // ======== Filesystem ========

    /// Closes file for reading, resetting the offset and allowing to read it from beginning with readLine.
    /// `path` is relative to the project root.
    function closeFile(string calldata path) external;

    /// Copies the contents of one file to another. This function will **overwrite** the contents of `to`.
    /// On success, the total number of bytes copied is returned and it is equal to the length of the `to` file as reported by `metadata`.
    /// Both `from` and `to` are relative to the project root.
    function copyFile(string calldata from, string calldata to) external returns (uint64 copied);

    /// Creates a new, empty directory at the provided path.
    /// This cheatcode will revert in the following situations, but is not limited to just these cases:
    /// - User lacks permissions to modify `path`.
    /// - A parent of the given path doesn't exist and `recursive` is false.
    /// - `path` already exists and `recursive` is false.
    /// `path` is relative to the project root.
    function createDir(string calldata path, bool recursive) external;

    /// Deploys a contract from an artifact file. Takes in the relative path to the json file or the path to the
    /// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
    function deployCode(string calldata artifactPath) external returns (address deployedAddress);

    /// Deploys a contract from an artifact file. Takes in the relative path to the json file or the path to the
    /// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
    /// Additionally accepts abi-encoded constructor arguments.
    function deployCode(string calldata artifactPath, bytes calldata constructorArgs)
        external
        returns (address deployedAddress);

    /// Returns true if the given path points to an existing entity, else returns false.
    function exists(string calldata path) external returns (bool result);

    /// Performs a foreign function call via the terminal.
    function ffi(string[] calldata commandInput) external returns (bytes memory result);

    /// Given a path, query the file system to get information about a file, directory, etc.
    function fsMetadata(string calldata path) external view returns (FsMetadata memory metadata);

    /// Gets the artifact path from code (aka. creation code).
    function getArtifactPathByCode(bytes calldata code) external view returns (string memory path);

    /// Gets the artifact path from deployed code (aka. runtime code).
    function getArtifactPathByDeployedCode(bytes calldata deployedCode) external view returns (string memory path);

    /// Gets the creation bytecode from an artifact file. Takes in the relative path to the json file or the path to the
    /// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
    function getCode(string calldata artifactPath) external view returns (bytes memory creationBytecode);

    /// Gets the deployed bytecode from an artifact file. Takes in the relative path to the json file or the path to the
    /// artifact in the form of <path>:<contract>:<version> where <contract> and <version> parts are optional.
    function getDeployedCode(string calldata artifactPath) external view returns (bytes memory runtimeBytecode);

    /// Returns true if the path exists on disk and is pointing at a directory, else returns false.
    function isDir(string calldata path) external returns (bool result);

    /// Returns true if the path exists on disk and is pointing at a regular file, else returns false.
    function isFile(string calldata path) external returns (bool result);

    /// Get the path of the current project root.
    function projectRoot() external view returns (string memory path);

    /// Prompts the user for a string value in the terminal.
    function prompt(string calldata promptText) external returns (string memory input);

    /// Prompts the user for an address in the terminal.
    function promptAddress(string calldata promptText) external returns (address);

    /// Prompts the user for a hidden string value in the terminal.
    function promptSecret(string calldata promptText) external returns (string memory input);

    /// Prompts the user for hidden uint256 in the terminal (usually pk).
    function promptSecretUint(string calldata promptText) external returns (uint256);

    /// Prompts the user for uint256 in the terminal.
    function promptUint(string calldata promptText) external returns (uint256);

    /// Reads the directory at the given path recursively, up to `maxDepth`.
    /// `maxDepth` defaults to 1, meaning only the direct children of the given directory will be returned.
    /// Follows symbolic links if `followLinks` is true.
    function readDir(string calldata path) external view returns (DirEntry[] memory entries);

    /// See `readDir(string)`.
    function readDir(string calldata path, uint64 maxDepth) external view returns (DirEntry[] memory entries);

    /// See `readDir(string)`.
    function readDir(string calldata path, uint64 maxDepth, bool followLinks)
        external
        view
        returns (DirEntry[] memory entries);

    /// Reads the entire content of file to string. `path` is relative to the project root.
    function readFile(string calldata path) external view returns (string memory data);

    /// Reads the entire content of file as binary. `path` is relative to the project root.
    function readFileBinary(string calldata path) external view returns (bytes memory data);

    /// Reads next line of file to string.
    function readLine(string calldata path) external view returns (string memory line);

    /// Reads a symbolic link, returning the path that the link points to.
    /// This cheatcode will revert in the following situations, but is not limited to just these cases:
    /// - `path` is not a symbolic link.
    /// - `path` does not exist.
    function readLink(string calldata linkPath) external view returns (string memory targetPath);

    /// Removes a directory at the provided path.
    /// This cheatcode will revert in the following situations, but is not limited to just these cases:
    /// - `path` doesn't exist.
    /// - `path` isn't a directory.
    /// - User lacks permissions to modify `path`.
    /// - The directory is not empty and `recursive` is false.
    /// `path` is relative to the project root.
    function removeDir(string calldata path, bool recursive) external;

    /// Removes a file from the filesystem.
    /// This cheatcode will revert in the following situations, but is not limited to just these cases:
    /// - `path` points to a directory.
    /// - The file doesn't exist.
    /// - The user lacks permissions to remove the file.
    /// `path` is relative to the project root.
    function removeFile(string calldata path) external;

    /// Performs a foreign function call via terminal and returns the exit code, stdout, and stderr.
    function tryFfi(string[] calldata commandInput) external returns (FfiResult memory result);

    /// Returns the time since unix epoch in milliseconds.
    function unixTime() external returns (uint256 milliseconds);

    /// Writes data to file, creating a file if it does not exist, and entirely replacing its contents if it does.
    /// `path` is relative to the project root.
    function writeFile(string calldata path, string calldata data) external;

    /// Writes binary data to a file, creating a file if it does not exist, and entirely replacing its contents if it does.
    /// `path` is relative to the project root.
    function writeFileBinary(string calldata path, bytes calldata data) external;

    /// Writes line to file, creating a file if it does not exist.
    /// `path` is relative to the project root.
    function writeLine(string calldata path, string calldata data) external;

    // ======== JSON ========

    /// Checks if `key` exists in a JSON object.
    function keyExistsJson(string calldata json, string calldata key) external view returns (bool);

    /// Parses a string of JSON data at `key` and coerces it to `address`.
    function parseJsonAddress(string calldata json, string calldata key) external pure returns (address);

    /// Parses a string of JSON data at `key` and coerces it to `address[]`.
    function parseJsonAddressArray(string calldata json, string calldata key)
        external
        pure
        returns (address[] memory);

    /// Parses a string of JSON data at `key` and coerces it to `bool`.
    function parseJsonBool(string calldata json, string calldata key) external pure returns (bool);

    /// Parses a string of JSON data at `key` and coerces it to `bool[]`.
    function parseJsonBoolArray(string calldata json, string calldata key) external pure returns (bool[] memory);

    /// Parses a string of JSON data at `key` and coerces it to `bytes`.
    function parseJsonBytes(string calldata json, string calldata key) external pure returns (bytes memory);

    /// Parses a string of JSON data at `key` and coerces it to `bytes32`.
    function parseJsonBytes32(string calldata json, string calldata key) external pure returns (bytes32);

    /// Parses a string of JSON data at `key` and coerces it to `bytes32[]`.
    function parseJsonBytes32Array(string calldata json, string calldata key)
        external
        pure
        returns (bytes32[] memory);

    /// Parses a string of JSON data at `key` and coerces it to `bytes[]`.
    function parseJsonBytesArray(string calldata json, string calldata key) external pure returns (bytes[] memory);

    /// Parses a string of JSON data at `key` and coerces it to `int256`.
    function parseJsonInt(string calldata json, string calldata key) external pure returns (int256);

    /// Parses a string of JSON data at `key` and coerces it to `int256[]`.
    function parseJsonIntArray(string calldata json, string calldata key) external pure returns (int256[] memory);

    /// Returns an array of all the keys in a JSON object.
    function parseJsonKeys(string calldata json, string calldata key) external pure returns (string[] memory keys);

    /// Parses a string of JSON data at `key` and coerces it to `string`.
    function parseJsonString(string calldata json, string calldata key) external pure returns (string memory);

    /// Parses a string of JSON data at `key` and coerces it to `string[]`.
    function parseJsonStringArray(string calldata json, string calldata key) external pure returns (string[] memory);

    /// Parses a string of JSON data at `key` and coerces it to type array corresponding to `typeDescription`.
    function parseJsonTypeArray(string calldata json, string calldata key, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of JSON data and coerces it to type corresponding to `typeDescription`.
    function parseJsonType(string calldata json, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of JSON data at `key` and coerces it to type corresponding to `typeDescription`.
    function parseJsonType(string calldata json, string calldata key, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of JSON data at `key` and coerces it to `uint256`.
    function parseJsonUint(string calldata json, string calldata key) external pure returns (uint256);

    /// Parses a string of JSON data at `key` and coerces it to `uint256[]`.
    function parseJsonUintArray(string calldata json, string calldata key) external pure returns (uint256[] memory);

    /// ABI-encodes a JSON object.
    function parseJson(string calldata json) external pure returns (bytes memory abiEncodedData);

    /// ABI-encodes a JSON object at `key`.
    function parseJson(string calldata json, string calldata key) external pure returns (bytes memory abiEncodedData);

    /// See `serializeJson`.
    function serializeAddress(string calldata objectKey, string calldata valueKey, address value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeAddress(string calldata objectKey, string calldata valueKey, address[] calldata values)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBool(string calldata objectKey, string calldata valueKey, bool value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBool(string calldata objectKey, string calldata valueKey, bool[] calldata values)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32 value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32[] calldata values)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBytes(string calldata objectKey, string calldata valueKey, bytes calldata value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeBytes(string calldata objectKey, string calldata valueKey, bytes[] calldata values)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeInt(string calldata objectKey, string calldata valueKey, int256 value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeInt(string calldata objectKey, string calldata valueKey, int256[] calldata values)
        external
        returns (string memory json);

    /// Serializes a key and value to a JSON object stored in-memory that can be later written to a file.
    /// Returns the stringified version of the specific JSON file up to that moment.
    function serializeJson(string calldata objectKey, string calldata value) external returns (string memory json);

    /// See `serializeJson`.
    function serializeJsonType(string calldata typeDescription, bytes calldata value)
        external
        pure
        returns (string memory json);

    /// See `serializeJson`.
    function serializeJsonType(
        string calldata objectKey,
        string calldata valueKey,
        string calldata typeDescription,
        bytes calldata value
    ) external returns (string memory json);

    /// See `serializeJson`.
    function serializeString(string calldata objectKey, string calldata valueKey, string calldata value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeString(string calldata objectKey, string calldata valueKey, string[] calldata values)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeUintToHex(string calldata objectKey, string calldata valueKey, uint256 value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeUint(string calldata objectKey, string calldata valueKey, uint256 value)
        external
        returns (string memory json);

    /// See `serializeJson`.
    function serializeUint(string calldata objectKey, string calldata valueKey, uint256[] calldata values)
        external
        returns (string memory json);

    /// Write a serialized JSON object to a file. If the file exists, it will be overwritten.
    function writeJson(string calldata json, string calldata path) external;

    /// Write a serialized JSON object to an **existing** JSON file, replacing a value with key = <value_key.>
    /// This is useful to replace a specific value of a JSON file, without having to parse the entire thing.
    function writeJson(string calldata json, string calldata path, string calldata valueKey) external;

    /// Checks if `key` exists in a JSON object
    /// `keyExists` is being deprecated in favor of `keyExistsJson`. It will be removed in future versions.
    function keyExists(string calldata json, string calldata key) external view returns (bool);

    // ======== Scripting ========

    /// Takes a signed transaction and broadcasts it to the network.
    function broadcastRawTransaction(bytes calldata data) external;

    /// Has the next call (at this call depth only) create transactions that can later be signed and sent onchain.
    /// Broadcasting address is determined by checking the following in order:
    /// 1. If `--sender` argument was provided, that address is used.
    /// 2. If exactly one signer (e.g. private key, hw wallet, keystore) is set when `forge broadcast` is invoked, that signer is used.
    /// 3. Otherwise, default foundry sender (1804c8AB1F12E6bbf3894d4083f33e07309d1f38) is used.
    function broadcast() external;

    /// Has the next call (at this call depth only) create a transaction with the address provided
    /// as the sender that can later be signed and sent onchain.
    function broadcast(address signer) external;

    /// Has the next call (at this call depth only) create a transaction with the private key
    /// provided as the sender that can later be signed and sent onchain.
    function broadcast(uint256 privateKey) external;

    /// Has all subsequent calls (at this call depth only) create transactions that can later be signed and sent onchain.
    /// Broadcasting address is determined by checking the following in order:
    /// 1. If `--sender` argument was provided, that address is used.
    /// 2. If exactly one signer (e.g. private key, hw wallet, keystore) is set when `forge broadcast` is invoked, that signer is used.
    /// 3. Otherwise, default foundry sender (1804c8AB1F12E6bbf3894d4083f33e07309d1f38) is used.
    function startBroadcast() external;

    /// Has all subsequent calls (at this call depth only) create transactions with the address
    /// provided that can later be signed and sent onchain.
    function startBroadcast(address signer) external;

    /// Has all subsequent calls (at this call depth only) create transactions with the private key
    /// provided that can later be signed and sent onchain.
    function startBroadcast(uint256 privateKey) external;

    /// Stops collecting onchain transactions.
    function stopBroadcast() external;

    // ======== String ========

    /// Returns the index of the first occurrence of a `key` in an `input` string.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `key` is not found.
    /// Returns 0 in case of an empty `key`.
    function indexOf(string calldata input, string calldata key) external pure returns (uint256);

    /// Parses the given `string` into an `address`.
    function parseAddress(string calldata stringifiedValue) external pure returns (address parsedValue);

    /// Parses the given `string` into a `bool`.
    function parseBool(string calldata stringifiedValue) external pure returns (bool parsedValue);

    /// Parses the given `string` into `bytes`.
    function parseBytes(string calldata stringifiedValue) external pure returns (bytes memory parsedValue);

    /// Parses the given `string` into a `bytes32`.
    function parseBytes32(string calldata stringifiedValue) external pure returns (bytes32 parsedValue);

    /// Parses the given `string` into a `int256`.
    function parseInt(string calldata stringifiedValue) external pure returns (int256 parsedValue);

    /// Parses the given `string` into a `uint256`.
    function parseUint(string calldata stringifiedValue) external pure returns (uint256 parsedValue);

    /// Replaces occurrences of `from` in the given `string` with `to`.
    function replace(string calldata input, string calldata from, string calldata to)
        external
        pure
        returns (string memory output);

    /// Splits the given `string` into an array of strings divided by the `delimiter`.
    function split(string calldata input, string calldata delimiter) external pure returns (string[] memory outputs);

    /// Converts the given `string` value to Lowercase.
    function toLowercase(string calldata input) external pure returns (string memory output);

    /// Converts the given value to a `string`.
    function toString(address value) external pure returns (string memory stringifiedValue);

    /// Converts the given value to a `string`.
    function toString(bytes calldata value) external pure returns (string memory stringifiedValue);

    /// Converts the given value to a `string`.
    function toString(bytes32 value) external pure returns (string memory stringifiedValue);

    /// Converts the given value to a `string`.
    function toString(bool value) external pure returns (string memory stringifiedValue);

    /// Converts the given value to a `string`.
    function toString(uint256 value) external pure returns (string memory stringifiedValue);

    /// Converts the given value to a `string`.
    function toString(int256 value) external pure returns (string memory stringifiedValue);

    /// Converts the given `string` value to Uppercase.
    function toUppercase(string calldata input) external pure returns (string memory output);

    /// Trims leading and trailing whitespace from the given `string` value.
    function trim(string calldata input) external pure returns (string memory output);

    // ======== Testing ========

    /// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Formats values with decimals in failure message.
    function assertApproxEqAbsDecimal(uint256 left, uint256 right, uint256 maxDelta, uint256 decimals) external pure;

    /// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertApproxEqAbsDecimal(
        uint256 left,
        uint256 right,
        uint256 maxDelta,
        uint256 decimals,
        string calldata error
    ) external pure;

    /// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Formats values with decimals in failure message.
    function assertApproxEqAbsDecimal(int256 left, int256 right, uint256 maxDelta, uint256 decimals) external pure;

    /// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertApproxEqAbsDecimal(
        int256 left,
        int256 right,
        uint256 maxDelta,
        uint256 decimals,
        string calldata error
    ) external pure;

    /// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
    function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta) external pure;

    /// Compares two `uint256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Includes error message into revert string on failure.
    function assertApproxEqAbs(uint256 left, uint256 right, uint256 maxDelta, string calldata error) external pure;

    /// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
    function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta) external pure;

    /// Compares two `int256` values. Expects difference to be less than or equal to `maxDelta`.
    /// Includes error message into revert string on failure.
    function assertApproxEqAbs(int256 left, int256 right, uint256 maxDelta, string calldata error) external pure;

    /// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Formats values with decimals in failure message.
    function assertApproxEqRelDecimal(uint256 left, uint256 right, uint256 maxPercentDelta, uint256 decimals)
        external
        pure;

    /// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertApproxEqRelDecimal(
        uint256 left,
        uint256 right,
        uint256 maxPercentDelta,
        uint256 decimals,
        string calldata error
    ) external pure;

    /// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Formats values with decimals in failure message.
    function assertApproxEqRelDecimal(int256 left, int256 right, uint256 maxPercentDelta, uint256 decimals)
        external
        pure;

    /// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertApproxEqRelDecimal(
        int256 left,
        int256 right,
        uint256 maxPercentDelta,
        uint256 decimals,
        string calldata error
    ) external pure;

    /// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    function assertApproxEqRel(uint256 left, uint256 right, uint256 maxPercentDelta) external pure;

    /// Compares two `uint256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Includes error message into revert string on failure.
    function assertApproxEqRel(uint256 left, uint256 right, uint256 maxPercentDelta, string calldata error)
        external
        pure;

    /// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta) external pure;

    /// Compares two `int256` values. Expects relative difference in percents to be less than or equal to `maxPercentDelta`.
    /// `maxPercentDelta` is an 18 decimal fixed point number, where 1e18 == 100%
    /// Includes error message into revert string on failure.
    function assertApproxEqRel(int256 left, int256 right, uint256 maxPercentDelta, string calldata error)
        external
        pure;

    /// Asserts that two `uint256` values are equal, formatting them with decimals in failure message.
    function assertEqDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Asserts that two `uint256` values are equal, formatting them with decimals in failure message.
    /// Includes error message into revert string on failure.
    function assertEqDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Asserts that two `int256` values are equal, formatting them with decimals in failure message.
    function assertEqDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Asserts that two `int256` values are equal, formatting them with decimals in failure message.
    /// Includes error message into revert string on failure.
    function assertEqDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Asserts that two `bool` values are equal.
    function assertEq(bool left, bool right) external pure;

    /// Asserts that two `bool` values are equal and includes error message into revert string on failure.
    function assertEq(bool left, bool right, string calldata error) external pure;

    /// Asserts that two `string` values are equal.
    function assertEq(string calldata left, string calldata right) external pure;

    /// Asserts that two `string` values are equal and includes error message into revert string on failure.
    function assertEq(string calldata left, string calldata right, string calldata error) external pure;

    /// Asserts that two `bytes` values are equal.
    function assertEq(bytes calldata left, bytes calldata right) external pure;

    /// Asserts that two `bytes` values are equal and includes error message into revert string on failure.
    function assertEq(bytes calldata left, bytes calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bool` values are equal.
    function assertEq(bool[] calldata left, bool[] calldata right) external pure;

    /// Asserts that two arrays of `bool` values are equal and includes error message into revert string on failure.
    function assertEq(bool[] calldata left, bool[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `uint256 values are equal.
    function assertEq(uint256[] calldata left, uint256[] calldata right) external pure;

    /// Asserts that two arrays of `uint256` values are equal and includes error message into revert string on failure.
    function assertEq(uint256[] calldata left, uint256[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `int256` values are equal.
    function assertEq(int256[] calldata left, int256[] calldata right) external pure;

    /// Asserts that two arrays of `int256` values are equal and includes error message into revert string on failure.
    function assertEq(int256[] calldata left, int256[] calldata right, string calldata error) external pure;

    /// Asserts that two `uint256` values are equal.
    function assertEq(uint256 left, uint256 right) external pure;

    /// Asserts that two arrays of `address` values are equal.
    function assertEq(address[] calldata left, address[] calldata right) external pure;

    /// Asserts that two arrays of `address` values are equal and includes error message into revert string on failure.
    function assertEq(address[] calldata left, address[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bytes32` values are equal.
    function assertEq(bytes32[] calldata left, bytes32[] calldata right) external pure;

    /// Asserts that two arrays of `bytes32` values are equal and includes error message into revert string on failure.
    function assertEq(bytes32[] calldata left, bytes32[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `string` values are equal.
    function assertEq(string[] calldata left, string[] calldata right) external pure;

    /// Asserts that two arrays of `string` values are equal and includes error message into revert string on failure.
    function assertEq(string[] calldata left, string[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bytes` values are equal.
    function assertEq(bytes[] calldata left, bytes[] calldata right) external pure;

    /// Asserts that two arrays of `bytes` values are equal and includes error message into revert string on failure.
    function assertEq(bytes[] calldata left, bytes[] calldata right, string calldata error) external pure;

    /// Asserts that two `uint256` values are equal and includes error message into revert string on failure.
    function assertEq(uint256 left, uint256 right, string calldata error) external pure;

    /// Asserts that two `int256` values are equal.
    function assertEq(int256 left, int256 right) external pure;

    /// Asserts that two `int256` values are equal and includes error message into revert string on failure.
    function assertEq(int256 left, int256 right, string calldata error) external pure;

    /// Asserts that two `address` values are equal.
    function assertEq(address left, address right) external pure;

    /// Asserts that two `address` values are equal and includes error message into revert string on failure.
    function assertEq(address left, address right, string calldata error) external pure;

    /// Asserts that two `bytes32` values are equal.
    function assertEq(bytes32 left, bytes32 right) external pure;

    /// Asserts that two `bytes32` values are equal and includes error message into revert string on failure.
    function assertEq(bytes32 left, bytes32 right, string calldata error) external pure;

    /// Asserts that the given condition is false.
    function assertFalse(bool condition) external pure;

    /// Asserts that the given condition is false and includes error message into revert string on failure.
    function assertFalse(bool condition, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than or equal to second.
    /// Formats values with decimals in failure message.
    function assertGeDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than or equal to second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertGeDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be greater than or equal to second.
    /// Formats values with decimals in failure message.
    function assertGeDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Compares two `int256` values. Expects first value to be greater than or equal to second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertGeDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than or equal to second.
    function assertGe(uint256 left, uint256 right) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than or equal to second.
    /// Includes error message into revert string on failure.
    function assertGe(uint256 left, uint256 right, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be greater than or equal to second.
    function assertGe(int256 left, int256 right) external pure;

    /// Compares two `int256` values. Expects first value to be greater than or equal to second.
    /// Includes error message into revert string on failure.
    function assertGe(int256 left, int256 right, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than second.
    /// Formats values with decimals in failure message.
    function assertGtDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertGtDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be greater than second.
    /// Formats values with decimals in failure message.
    function assertGtDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Compares two `int256` values. Expects first value to be greater than second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertGtDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than second.
    function assertGt(uint256 left, uint256 right) external pure;

    /// Compares two `uint256` values. Expects first value to be greater than second.
    /// Includes error message into revert string on failure.
    function assertGt(uint256 left, uint256 right, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be greater than second.
    function assertGt(int256 left, int256 right) external pure;

    /// Compares two `int256` values. Expects first value to be greater than second.
    /// Includes error message into revert string on failure.
    function assertGt(int256 left, int256 right, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be less than or equal to second.
    /// Formats values with decimals in failure message.
    function assertLeDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Compares two `uint256` values. Expects first value to be less than or equal to second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertLeDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be less than or equal to second.
    /// Formats values with decimals in failure message.
    function assertLeDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Compares two `int256` values. Expects first value to be less than or equal to second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertLeDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be less than or equal to second.
    function assertLe(uint256 left, uint256 right) external pure;

    /// Compares two `uint256` values. Expects first value to be less than or equal to second.
    /// Includes error message into revert string on failure.
    function assertLe(uint256 left, uint256 right, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be less than or equal to second.
    function assertLe(int256 left, int256 right) external pure;

    /// Compares two `int256` values. Expects first value to be less than or equal to second.
    /// Includes error message into revert string on failure.
    function assertLe(int256 left, int256 right, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be less than second.
    /// Formats values with decimals in failure message.
    function assertLtDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Compares two `uint256` values. Expects first value to be less than second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertLtDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be less than second.
    /// Formats values with decimals in failure message.
    function assertLtDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Compares two `int256` values. Expects first value to be less than second.
    /// Formats values with decimals in failure message. Includes error message into revert string on failure.
    function assertLtDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Compares two `uint256` values. Expects first value to be less than second.
    function assertLt(uint256 left, uint256 right) external pure;

    /// Compares two `uint256` values. Expects first value to be less than second.
    /// Includes error message into revert string on failure.
    function assertLt(uint256 left, uint256 right, string calldata error) external pure;

    /// Compares two `int256` values. Expects first value to be less than second.
    function assertLt(int256 left, int256 right) external pure;

    /// Compares two `int256` values. Expects first value to be less than second.
    /// Includes error message into revert string on failure.
    function assertLt(int256 left, int256 right, string calldata error) external pure;

    /// Asserts that two `uint256` values are not equal, formatting them with decimals in failure message.
    function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals) external pure;

    /// Asserts that two `uint256` values are not equal, formatting them with decimals in failure message.
    /// Includes error message into revert string on failure.
    function assertNotEqDecimal(uint256 left, uint256 right, uint256 decimals, string calldata error) external pure;

    /// Asserts that two `int256` values are not equal, formatting them with decimals in failure message.
    function assertNotEqDecimal(int256 left, int256 right, uint256 decimals) external pure;

    /// Asserts that two `int256` values are not equal, formatting them with decimals in failure message.
    /// Includes error message into revert string on failure.
    function assertNotEqDecimal(int256 left, int256 right, uint256 decimals, string calldata error) external pure;

    /// Asserts that two `bool` values are not equal.
    function assertNotEq(bool left, bool right) external pure;

    /// Asserts that two `bool` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bool left, bool right, string calldata error) external pure;

    /// Asserts that two `string` values are not equal.
    function assertNotEq(string calldata left, string calldata right) external pure;

    /// Asserts that two `string` values are not equal and includes error message into revert string on failure.
    function assertNotEq(string calldata left, string calldata right, string calldata error) external pure;

    /// Asserts that two `bytes` values are not equal.
    function assertNotEq(bytes calldata left, bytes calldata right) external pure;

    /// Asserts that two `bytes` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bytes calldata left, bytes calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bool` values are not equal.
    function assertNotEq(bool[] calldata left, bool[] calldata right) external pure;

    /// Asserts that two arrays of `bool` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bool[] calldata left, bool[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `uint256` values are not equal.
    function assertNotEq(uint256[] calldata left, uint256[] calldata right) external pure;

    /// Asserts that two arrays of `uint256` values are not equal and includes error message into revert string on failure.
    function assertNotEq(uint256[] calldata left, uint256[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `int256` values are not equal.
    function assertNotEq(int256[] calldata left, int256[] calldata right) external pure;

    /// Asserts that two arrays of `int256` values are not equal and includes error message into revert string on failure.
    function assertNotEq(int256[] calldata left, int256[] calldata right, string calldata error) external pure;

    /// Asserts that two `uint256` values are not equal.
    function assertNotEq(uint256 left, uint256 right) external pure;

    /// Asserts that two arrays of `address` values are not equal.
    function assertNotEq(address[] calldata left, address[] calldata right) external pure;

    /// Asserts that two arrays of `address` values are not equal and includes error message into revert string on failure.
    function assertNotEq(address[] calldata left, address[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bytes32` values are not equal.
    function assertNotEq(bytes32[] calldata left, bytes32[] calldata right) external pure;

    /// Asserts that two arrays of `bytes32` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bytes32[] calldata left, bytes32[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `string` values are not equal.
    function assertNotEq(string[] calldata left, string[] calldata right) external pure;

    /// Asserts that two arrays of `string` values are not equal and includes error message into revert string on failure.
    function assertNotEq(string[] calldata left, string[] calldata right, string calldata error) external pure;

    /// Asserts that two arrays of `bytes` values are not equal.
    function assertNotEq(bytes[] calldata left, bytes[] calldata right) external pure;

    /// Asserts that two arrays of `bytes` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bytes[] calldata left, bytes[] calldata right, string calldata error) external pure;

    /// Asserts that two `uint256` values are not equal and includes error message into revert string on failure.
    function assertNotEq(uint256 left, uint256 right, string calldata error) external pure;

    /// Asserts that two `int256` values are not equal.
    function assertNotEq(int256 left, int256 right) external pure;

    /// Asserts that two `int256` values are not equal and includes error message into revert string on failure.
    function assertNotEq(int256 left, int256 right, string calldata error) external pure;

    /// Asserts that two `address` values are not equal.
    function assertNotEq(address left, address right) external pure;

    /// Asserts that two `address` values are not equal and includes error message into revert string on failure.
    function assertNotEq(address left, address right, string calldata error) external pure;

    /// Asserts that two `bytes32` values are not equal.
    function assertNotEq(bytes32 left, bytes32 right) external pure;

    /// Asserts that two `bytes32` values are not equal and includes error message into revert string on failure.
    function assertNotEq(bytes32 left, bytes32 right, string calldata error) external pure;

    /// Asserts that the given condition is true.
    function assertTrue(bool condition) external pure;

    /// Asserts that the given condition is true and includes error message into revert string on failure.
    function assertTrue(bool condition, string calldata error) external pure;

    /// If the condition is false, discard this run's fuzz inputs and generate new ones.
    function assume(bool condition) external pure;

    /// Discard this run's fuzz inputs and generate new ones if next call reverted.
    function assumeNoRevert() external pure;

    /// Writes a breakpoint to jump to in the debugger.
    function breakpoint(string calldata char) external;

    /// Writes a conditional breakpoint to jump to in the debugger.
    function breakpoint(string calldata char, bool value) external;

    /// Returns the Foundry version.
    /// Format: <cargo_version>+<git_sha>+<build_timestamp>
    /// Sample output: 0.2.0+faa94c384+202407110019
    /// Note: Build timestamps may vary slightly across platforms due to separate CI jobs.
    /// For reliable version comparisons, use YYYYMMDD0000 format (e.g., >= 202407110000)
    /// to compare timestamps while ignoring minor time differences.
    function getFoundryVersion() external view returns (string memory version);

    /// Returns the RPC url for the given alias.
    function rpcUrl(string calldata rpcAlias) external view returns (string memory json);

    /// Returns all rpc urls and their aliases as structs.
    function rpcUrlStructs() external view returns (Rpc[] memory urls);

    /// Returns all rpc urls and their aliases `[alias, url][]`.
    function rpcUrls() external view returns (string[2][] memory urls);

    /// Suspends execution of the main thread for `duration` milliseconds.
    function sleep(uint256 duration) external;

    // ======== Toml ========

    /// Checks if `key` exists in a TOML table.
    function keyExistsToml(string calldata toml, string calldata key) external view returns (bool);

    /// Parses a string of TOML data at `key` and coerces it to `address`.
    function parseTomlAddress(string calldata toml, string calldata key) external pure returns (address);

    /// Parses a string of TOML data at `key` and coerces it to `address[]`.
    function parseTomlAddressArray(string calldata toml, string calldata key)
        external
        pure
        returns (address[] memory);

    /// Parses a string of TOML data at `key` and coerces it to `bool`.
    function parseTomlBool(string calldata toml, string calldata key) external pure returns (bool);

    /// Parses a string of TOML data at `key` and coerces it to `bool[]`.
    function parseTomlBoolArray(string calldata toml, string calldata key) external pure returns (bool[] memory);

    /// Parses a string of TOML data at `key` and coerces it to `bytes`.
    function parseTomlBytes(string calldata toml, string calldata key) external pure returns (bytes memory);

    /// Parses a string of TOML data at `key` and coerces it to `bytes32`.
    function parseTomlBytes32(string calldata toml, string calldata key) external pure returns (bytes32);

    /// Parses a string of TOML data at `key` and coerces it to `bytes32[]`.
    function parseTomlBytes32Array(string calldata toml, string calldata key)
        external
        pure
        returns (bytes32[] memory);

    /// Parses a string of TOML data at `key` and coerces it to `bytes[]`.
    function parseTomlBytesArray(string calldata toml, string calldata key) external pure returns (bytes[] memory);

    /// Parses a string of TOML data at `key` and coerces it to `int256`.
    function parseTomlInt(string calldata toml, string calldata key) external pure returns (int256);

    /// Parses a string of TOML data at `key` and coerces it to `int256[]`.
    function parseTomlIntArray(string calldata toml, string calldata key) external pure returns (int256[] memory);

    /// Returns an array of all the keys in a TOML table.
    function parseTomlKeys(string calldata toml, string calldata key) external pure returns (string[] memory keys);

    /// Parses a string of TOML data at `key` and coerces it to `string`.
    function parseTomlString(string calldata toml, string calldata key) external pure returns (string memory);

    /// Parses a string of TOML data at `key` and coerces it to `string[]`.
    function parseTomlStringArray(string calldata toml, string calldata key) external pure returns (string[] memory);

    /// Parses a string of TOML data at `key` and coerces it to type array corresponding to `typeDescription`.
    function parseTomlTypeArray(string calldata toml, string calldata key, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of TOML data and coerces it to type corresponding to `typeDescription`.
    function parseTomlType(string calldata toml, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of TOML data at `key` and coerces it to type corresponding to `typeDescription`.
    function parseTomlType(string calldata toml, string calldata key, string calldata typeDescription)
        external
        pure
        returns (bytes memory);

    /// Parses a string of TOML data at `key` and coerces it to `uint256`.
    function parseTomlUint(string calldata toml, string calldata key) external pure returns (uint256);

    /// Parses a string of TOML data at `key` and coerces it to `uint256[]`.
    function parseTomlUintArray(string calldata toml, string calldata key) external pure returns (uint256[] memory);

    /// ABI-encodes a TOML table.
    function parseToml(string calldata toml) external pure returns (bytes memory abiEncodedData);

    /// ABI-encodes a TOML table at `key`.
    function parseToml(string calldata toml, string calldata key) external pure returns (bytes memory abiEncodedData);

    /// Takes serialized JSON, converts to TOML and write a serialized TOML to a file.
    function writeToml(string calldata json, string calldata path) external;

    /// Takes serialized JSON, converts to TOML and write a serialized TOML table to an **existing** TOML file, replacing a value with key = <value_key.>
    /// This is useful to replace a specific value of a TOML file, without having to parse the entire thing.
    function writeToml(string calldata json, string calldata path, string calldata valueKey) external;

    // ======== Utilities ========

    /// Compute the address of a contract created with CREATE2 using the given CREATE2 deployer.
    function computeCreate2Address(bytes32 salt, bytes32 initCodeHash, address deployer)
        external
        pure
        returns (address);

    /// Compute the address of a contract created with CREATE2 using the default CREATE2 deployer.
    function computeCreate2Address(bytes32 salt, bytes32 initCodeHash) external pure returns (address);

    /// Compute the address a contract will be deployed at for a given deployer address and nonce.
    function computeCreateAddress(address deployer, uint256 nonce) external pure returns (address);

    /// Utility cheatcode to copy storage of `from` contract to another `to` contract.
    function copyStorage(address from, address to) external;

    /// Returns ENS namehash for provided string.
    function ensNamehash(string calldata name) external pure returns (bytes32);

    /// Gets the label for the specified address.
    function getLabel(address account) external view returns (string memory currentLabel);

    /// Labels an address in call traces.
    function label(address account, string calldata newLabel) external;

    /// Pauses collection of call traces. Useful in cases when you want to skip tracing of
    /// complex calls which are not useful for debugging.
    function pauseTracing() external view;

    /// Returns a random `address`.
    function randomAddress() external returns (address);

    /// Returns an random `bool`.
    function randomBool() external view returns (bool);

    /// Returns an random byte array value of the given length.
    function randomBytes(uint256 len) external view returns (bytes memory);

    /// Returns an random `int256` value.
    function randomInt() external view returns (int256);

    /// Returns an random `int256` value of given bits.
    function randomInt(uint256 bits) external view returns (int256);

    /// Returns a random uint256 value.
    function randomUint() external returns (uint256);

    /// Returns random uint256 value between the provided range (=min..=max).
    function randomUint(uint256 min, uint256 max) external returns (uint256);

    /// Returns an random `uint256` value of given bits.
    function randomUint(uint256 bits) external view returns (uint256);

    /// Unpauses collection of call traces.
    function resumeTracing() external view;

    /// Utility cheatcode to set arbitrary storage for given target address.
    function setArbitraryStorage(address target) external;

    /// Encodes a `bytes` value to a base64url string.
    function toBase64URL(bytes calldata data) external pure returns (string memory);

    /// Encodes a `string` value to a base64url string.
    function toBase64URL(string calldata data) external pure returns (string memory);

    /// Encodes a `bytes` value to a base64 string.
    function toBase64(bytes calldata data) external pure returns (string memory);

    /// Encodes a `string` value to a base64 string.
    function toBase64(string calldata data) external pure returns (string memory);
}

/// The `Vm` interface does allow manipulation of the EVM state. These are all intended to be used
/// in tests, but it is not recommended to use these cheats in scripts.
interface Vm is VmSafe {
    // ======== EVM ========

    /// Returns the identifier of the currently active fork. Reverts if no fork is currently active.
    function activeFork() external view returns (uint256 forkId);

    /// In forking mode, explicitly grant the given address cheatcode access.
    function allowCheatcodes(address account) external;

    /// Sets `block.blobbasefee`
    function blobBaseFee(uint256 newBlobBaseFee) external;

    /// Sets the blobhashes in the transaction.
    /// Not available on EVM versions before Cancun.
    /// If used on unsupported EVM versions it will revert.
    function blobhashes(bytes32[] calldata hashes) external;

    /// Sets `block.chainid`.
    function chainId(uint256 newChainId) external;

    /// Clears all mocked calls.
    function clearMockedCalls() external;

    /// Sets `block.coinbase`.
    function coinbase(address newCoinbase) external;

    /// Creates a new fork with the given endpoint and the _latest_ block and returns the identifier of the fork.
    function createFork(string calldata urlOrAlias) external returns (uint256 forkId);

    /// Creates a new fork with the given endpoint and block and returns the identifier of the fork.
    function createFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId);

    /// Creates a new fork with the given endpoint and at the block the given transaction was mined in,
    /// replays all transaction mined in the block before the transaction, and returns the identifier of the fork.
    function createFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId);

    /// Creates and also selects a new fork with the given endpoint and the latest block and returns the identifier of the fork.
    function createSelectFork(string calldata urlOrAlias) external returns (uint256 forkId);

    /// Creates and also selects a new fork with the given endpoint and block and returns the identifier of the fork.
    function createSelectFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId);

    /// Creates and also selects new fork with the given endpoint and at the block the given transaction was mined in,
    /// replays all transaction mined in the block before the transaction, returns the identifier of the fork.
    function createSelectFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId);

    /// Sets an address' balance.
    function deal(address account, uint256 newBalance) external;

    /// Removes the snapshot with the given ID created by `snapshot`.
    /// Takes the snapshot ID to delete.
    /// Returns `true` if the snapshot was successfully deleted.
    /// Returns `false` if the snapshot does not exist.
    function deleteSnapshot(uint256 snapshotId) external returns (bool success);

    /// Removes _all_ snapshots previously created by `snapshot`.
    function deleteSnapshots() external;

    /// Sets `block.difficulty`.
    /// Not available on EVM versions from Paris onwards. Use `prevrandao` instead.
    /// Reverts if used on unsupported EVM versions.
    function difficulty(uint256 newDifficulty) external;

    /// Dump a genesis JSON file's `allocs` to disk.
    function dumpState(string calldata pathToStateJson) external;

    /// Sets an address' code.
    function etch(address target, bytes calldata newRuntimeBytecode) external;

    /// Sets `block.basefee`.
    function fee(uint256 newBasefee) external;

    /// Gets the blockhashes from the current transaction.
    /// Not available on EVM versions before Cancun.
    /// If used on unsupported EVM versions it will revert.
    function getBlobhashes() external view returns (bytes32[] memory hashes);

    /// Returns true if the account is marked as persistent.
    function isPersistent(address account) external view returns (bool persistent);

    /// Load a genesis JSON file's `allocs` into the in-memory revm state.
    function loadAllocs(string calldata pathToAllocsJson) external;

    /// Marks that the account(s) should use persistent storage across fork swaps in a multifork setup
    /// Meaning, changes made to the state of this account will be kept when switching forks.
    function makePersistent(address account) external;

    /// See `makePersistent(address)`.
    function makePersistent(address account0, address account1) external;

    /// See `makePersistent(address)`.
    function makePersistent(address account0, address account1, address account2) external;

    /// See `makePersistent(address)`.
    function makePersistent(address[] calldata accounts) external;

    /// Reverts a call to an address with specified revert data.
    function mockCallRevert(address callee, bytes calldata data, bytes calldata revertData) external;

    /// Reverts a call to an address with a specific `msg.value`, with specified revert data.
    function mockCallRevert(address callee, uint256 msgValue, bytes calldata data, bytes calldata revertData)
        external;

    /// Mocks a call to an address, returning specified data.
    /// Calldata can either be strict or a partial match, e.g. if you only
    /// pass a Solidity selector to the expected calldata, then the entire Solidity
    /// function will be mocked.
    function mockCall(address callee, bytes calldata data, bytes calldata returnData) external;

    /// Mocks a call to an address with a specific `msg.value`, returning specified data.
    /// Calldata match takes precedence over `msg.value` in case of ambiguity.
    function mockCall(address callee, uint256 msgValue, bytes calldata data, bytes calldata returnData) external;

    /// Whenever a call is made to `callee` with calldata `data`, this cheatcode instead calls
    /// `target` with the same calldata. This functionality is similar to a delegate call made to
    /// `target` contract from `callee`.
    /// Can be used to substitute a call to a function with another implementation that captures
    /// the primary logic of the original function but is easier to reason about.
    /// If calldata is not a strict match then partial match by selector is attempted.
    function mockFunction(address callee, address target, bytes calldata data) external;

    /// Sets the *next* call's `msg.sender` to be the input address.
    function prank(address msgSender) external;

    /// Sets the *next* call's `msg.sender` to be the input address, and the `tx.origin` to be the second input.
    function prank(address msgSender, address txOrigin) external;

    /// Sets `block.prevrandao`.
    /// Not available on EVM versions before Paris. Use `difficulty` instead.
    /// If used on unsupported EVM versions it will revert.
    function prevrandao(bytes32 newPrevrandao) external;

    /// Sets `block.prevrandao`.
    /// Not available on EVM versions before Paris. Use `difficulty` instead.
    /// If used on unsupported EVM versions it will revert.
    function prevrandao(uint256 newPrevrandao) external;

    /// Reads the current `msg.sender` and `tx.origin` from state and reports if there is any active caller modification.
    function readCallers() external returns (CallerMode callerMode, address msgSender, address txOrigin);

    /// Resets the nonce of an account to 0 for EOAs and 1 for contract accounts.
    function resetNonce(address account) external;

    /// Revert the state of the EVM to a previous snapshot
    /// Takes the snapshot ID to revert to.
    /// Returns `true` if the snapshot was successfully reverted.
    /// Returns `false` if the snapshot does not exist.
    /// **Note:** This does not automatically delete the snapshot. To delete the snapshot use `deleteSnapshot`.
    function revertTo(uint256 snapshotId) external returns (bool success);

    /// Revert the state of the EVM to a previous snapshot and automatically deletes the snapshots
    /// Takes the snapshot ID to revert to.
    /// Returns `true` if the snapshot was successfully reverted and deleted.
    /// Returns `false` if the snapshot does not exist.
    function revertToAndDelete(uint256 snapshotId) external returns (bool success);

    /// Revokes persistent status from the address, previously added via `makePersistent`.
    function revokePersistent(address account) external;

    /// See `revokePersistent(address)`.
    function revokePersistent(address[] calldata accounts) external;

    /// Sets `block.height`.
    function roll(uint256 newHeight) external;

    /// Updates the currently active fork to given block number
    /// This is similar to `roll` but for the currently active fork.
    function rollFork(uint256 blockNumber) external;

    /// Updates the currently active fork to given transaction. This will `rollFork` with the number
    /// of the block the transaction was mined in and replays all transaction mined before it in the block.
    function rollFork(bytes32 txHash) external;

    /// Updates the given fork to given block number.
    function rollFork(uint256 forkId, uint256 blockNumber) external;

    /// Updates the given fork to block number of the given transaction and replays all transaction mined before it in the block.
    function rollFork(uint256 forkId, bytes32 txHash) external;

    /// Takes a fork identifier created by `createFork` and sets the corresponding forked state as active.
    function selectFork(uint256 forkId) external;

    /// Set blockhash for the current block.
    /// It only sets the blockhash for blocks where `block.number - 256 <= number < block.number`.
    function setBlockhash(uint256 blockNumber, bytes32 blockHash) external;

    /// Sets the nonce of an account. Must be higher than the current nonce of the account.
    function setNonce(address account, uint64 newNonce) external;

    /// Sets the nonce of an account to an arbitrary value.
    function setNonceUnsafe(address account, uint64 newNonce) external;

    /// Snapshot the current state of the evm.
    /// Returns the ID of the snapshot that was created.
    /// To revert a snapshot use `revertTo`.
    function snapshot() external returns (uint256 snapshotId);

    /// Sets all subsequent calls' `msg.sender` to be the input address until `stopPrank` is called.
    function startPrank(address msgSender) external;

    /// Sets all subsequent calls' `msg.sender` to be the input address until `stopPrank` is called, and the `tx.origin` to be the second input.
    function startPrank(address msgSender, address txOrigin) external;

    /// Resets subsequent calls' `msg.sender` to be `address(this)`.
    function stopPrank() external;

    /// Stores a value to an address' storage slot.
    function store(address target, bytes32 slot, bytes32 value) external;

    /// Fetches the given transaction from the active fork and executes it on the current state.
    function transact(bytes32 txHash) external;

    /// Fetches the given transaction from the given fork and executes it on the current state.
    function transact(uint256 forkId, bytes32 txHash) external;

    /// Sets `tx.gasprice`.
    function txGasPrice(uint256 newGasPrice) external;

    /// Sets `block.timestamp`.
    function warp(uint256 newTimestamp) external;

    // ======== Testing ========

    /// Expect a call to an address with the specified `msg.value` and calldata, and a *minimum* amount of gas.
    function expectCallMinGas(address callee, uint256 msgValue, uint64 minGas, bytes calldata data) external;

    /// Expect given number of calls to an address with the specified `msg.value` and calldata, and a *minimum* amount of gas.
    function expectCallMinGas(address callee, uint256 msgValue, uint64 minGas, bytes calldata data, uint64 count)
        external;

    /// Expects a call to an address with the specified calldata.
    /// Calldata can either be a strict or a partial match.
    function expectCall(address callee, bytes calldata data) external;

    /// Expects given number of calls to an address with the specified calldata.
    function expectCall(address callee, bytes calldata data, uint64 count) external;

    /// Expects a call to an address with the specified `msg.value` and calldata.
    function expectCall(address callee, uint256 msgValue, bytes calldata data) external;

    /// Expects given number of calls to an address with the specified `msg.value` and calldata.
    function expectCall(address callee, uint256 msgValue, bytes calldata data, uint64 count) external;

    /// Expect a call to an address with the specified `msg.value`, gas, and calldata.
    function expectCall(address callee, uint256 msgValue, uint64 gas, bytes calldata data) external;

    /// Expects given number of calls to an address with the specified `msg.value`, gas, and calldata.
    function expectCall(address callee, uint256 msgValue, uint64 gas, bytes calldata data, uint64 count) external;

    /// Prepare an expected anonymous log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData.).
    /// Call this function, then emit an anonymous event, then call a function. Internally after the call, we check if
    /// logs were emitted in the expected order with the expected topics and data (as specified by the booleans).
    function expectEmitAnonymous(bool checkTopic0, bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData)
        external;

    /// Same as the previous method, but also checks supplied address against emitting contract.
    function expectEmitAnonymous(
        bool checkTopic0,
        bool checkTopic1,
        bool checkTopic2,
        bool checkTopic3,
        bool checkData,
        address emitter
    ) external;

    /// Prepare an expected anonymous log with all topic and data checks enabled.
    /// Call this function, then emit an anonymous event, then call a function. Internally after the call, we check if
    /// logs were emitted in the expected order with the expected topics and data.
    function expectEmitAnonymous() external;

    /// Same as the previous method, but also checks supplied address against emitting contract.
    function expectEmitAnonymous(address emitter) external;

    /// Prepare an expected log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData.).
    /// Call this function, then emit an event, then call a function. Internally after the call, we check if
    /// logs were emitted in the expected order with the expected topics and data (as specified by the booleans).
    function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData) external;

    /// Same as the previous method, but also checks supplied address against emitting contract.
    function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData, address emitter)
        external;

    /// Prepare an expected log with all topic and data checks enabled.
    /// Call this function, then emit an event, then call a function. Internally after the call, we check if
    /// logs were emitted in the expected order with the expected topics and data.
    function expectEmit() external;

    /// Same as the previous method, but also checks supplied address against emitting contract.
    function expectEmit(address emitter) external;

    /// Expects an error on next call that starts with the revert data.
    function expectPartialRevert(bytes4 revertData) external;

    /// Expects an error on next call to reverter address, that starts with the revert data.
    function expectPartialRevert(bytes4 revertData, address reverter) external;

    /// Expects an error on next call with any revert data.
    function expectRevert() external;

    /// Expects an error on next call that exactly matches the revert data.
    function expectRevert(bytes4 revertData) external;

    /// Expects an error on next call that exactly matches the revert data.
    function expectRevert(bytes calldata revertData) external;

    /// Expects an error with any revert data on next call to reverter address.
    function expectRevert(address reverter) external;

    /// Expects an error from reverter address on next call, with any revert data.
    function expectRevert(bytes4 revertData, address reverter) external;

    /// Expects an error from reverter address on next call, that exactly matches the revert data.
    function expectRevert(bytes calldata revertData, address reverter) external;

    /// Only allows memory writes to offsets [0x00, 0x60) ∪ [min, max) in the current subcontext. If any other
    /// memory is written to, the test will fail. Can be called multiple times to add more ranges to the set.
    function expectSafeMemory(uint64 min, uint64 max) external;

    /// Only allows memory writes to offsets [0x00, 0x60) ∪ [min, max) in the next created subcontext.
    /// If any other memory is written to, the test will fail. Can be called multiple times to add more ranges
    /// to the set.
    function expectSafeMemoryCall(uint64 min, uint64 max) external;

    /// Marks a test as skipped. Must be called at the top level of a test.
    function skip(bool skipTest) external;

    /// Marks a test as skipped with a reason. Must be called at the top level of a test.
    function skip(bool skipTest, string calldata reason) external;

    /// Stops all safe memory expectation in the current subcontext.
    function stopExpectSafeMemory() external;
}

File 49 of 57 : Base.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

import {StdStorage} from "./StdStorage.sol";
import {Vm, VmSafe} from "./Vm.sol";

abstract contract CommonBase {
    // Cheat code address, 0x7109709ECfa91a80626fF3989D68f67F5b1DD12D.
    address internal constant VM_ADDRESS = address(uint160(uint256(keccak256("hevm cheat code"))));
    // console.sol and console2.sol work by executing a staticcall to this address.
    address internal constant CONSOLE = 0x000000000000000000636F6e736F6c652e6c6f67;
    // Used when deploying with create2, https://github.com/Arachnid/deterministic-deployment-proxy.
    address internal constant CREATE2_FACTORY = 0x4e59b44847b379578588920cA78FbF26c0B4956C;
    // Default address for tx.origin and msg.sender, 0x1804c8AB1F12E6bbf3894d4083f33e07309d1f38.
    address internal constant DEFAULT_SENDER = address(uint160(uint256(keccak256("foundry default caller"))));
    // Address of the test contract, deployed by the DEFAULT_SENDER.
    address internal constant DEFAULT_TEST_CONTRACT = 0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f;
    // Deterministic deployment address of the Multicall3 contract.
    address internal constant MULTICALL3_ADDRESS = 0xcA11bde05977b3631167028862bE2a173976CA11;
    // The order of the secp256k1 curve.
    uint256 internal constant SECP256K1_ORDER =
        115792089237316195423570985008687907852837564279074904382605163141518161494337;

    uint256 internal constant UINT256_MAX =
        115792089237316195423570985008687907853269984665640564039457584007913129639935;

    Vm internal constant vm = Vm(VM_ADDRESS);
    StdStorage internal stdstore;
}

abstract contract TestBase is CommonBase {}

abstract contract ScriptBase is CommonBase {
    VmSafe internal constant vmSafe = VmSafe(VM_ADDRESS);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuardTransient.sol)

pragma solidity ^0.8.24;

import {TransientSlot} from "./TransientSlot.sol";

/**
 * @dev Variant of {ReentrancyGuard} that uses transient storage.
 *
 * NOTE: This variant only works on networks where EIP-1153 is available.
 *
 * _Available since v5.1._
 */
abstract contract ReentrancyGuardTransient {
    using TransientSlot for *;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        REENTRANCY_GUARD_STORAGE.asBoolean().tstore(true);
    }

    function _nonReentrantAfter() private {
        REENTRANCY_GUARD_STORAGE.asBoolean().tstore(false);
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return REENTRANCY_GUARD_STORAGE.asBoolean().tload();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

pragma experimental ABIEncoderV2;

interface IMulticall3 {
    struct Call {
        address target;
        bytes callData;
    }

    struct Call3 {
        address target;
        bool allowFailure;
        bytes callData;
    }

    struct Call3Value {
        address target;
        bool allowFailure;
        uint256 value;
        bytes callData;
    }

    struct Result {
        bool success;
        bytes returnData;
    }

    function aggregate(Call[] calldata calls)
        external
        payable
        returns (uint256 blockNumber, bytes[] memory returnData);

    function aggregate3(Call3[] calldata calls) external payable returns (Result[] memory returnData);

    function aggregate3Value(Call3Value[] calldata calls) external payable returns (Result[] memory returnData);

    function blockAndAggregate(Call[] calldata calls)
        external
        payable
        returns (uint256 blockNumber, bytes32 blockHash, Result[] memory returnData);

    function getBasefee() external view returns (uint256 basefee);

    function getBlockHash(uint256 blockNumber) external view returns (bytes32 blockHash);

    function getBlockNumber() external view returns (uint256 blockNumber);

    function getChainId() external view returns (uint256 chainid);

    function getCurrentBlockCoinbase() external view returns (address coinbase);

    function getCurrentBlockDifficulty() external view returns (uint256 difficulty);

    function getCurrentBlockGasLimit() external view returns (uint256 gaslimit);

    function getCurrentBlockTimestamp() external view returns (uint256 timestamp);

    function getEthBalance(address addr) external view returns (uint256 balance);

    function getLastBlockHash() external view returns (bytes32 blockHash);

    function tryAggregate(bool requireSuccess, Call[] calldata calls)
        external
        payable
        returns (Result[] memory returnData);

    function tryBlockAndAggregate(bool requireSuccess, Call[] calldata calls)
        external
        payable
        returns (uint256 blockNumber, bytes32 blockHash, Result[] memory returnData);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

import {IERC20} from "../interfaces/IERC20.sol";

/// @notice This is a mock contract of the ERC20 standard for testing purposes only, it SHOULD NOT be used in production.
/// @dev Forked from: https://github.com/transmissions11/solmate/blob/0384dbaaa4fcb5715738a9254a7c0a4cb62cf458/src/tokens/ERC20.sol
contract MockERC20 is IERC20 {
    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string internal _name;

    string internal _symbol;

    uint8 internal _decimals;

    function name() external view override returns (string memory) {
        return _name;
    }

    function symbol() external view override returns (string memory) {
        return _symbol;
    }

    function decimals() external view override returns (uint8) {
        return _decimals;
    }

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal _totalSupply;

    mapping(address => uint256) internal _balanceOf;

    mapping(address => mapping(address => uint256)) internal _allowance;

    function totalSupply() external view override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(address owner) external view override returns (uint256) {
        return _balanceOf[owner];
    }

    function allowance(address owner, address spender) external view override returns (uint256) {
        return _allowance[owner][spender];
    }

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal INITIAL_CHAIN_ID;

    bytes32 internal INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               INITIALIZE
    //////////////////////////////////////////////////////////////*/

    /// @dev A bool to track whether the contract has been initialized.
    bool private initialized;

    /// @dev To hide constructor warnings across solc versions due to different constructor visibility requirements and
    /// syntaxes, we add an initialization function that can be called only once.
    function initialize(string memory name_, string memory symbol_, uint8 decimals_) public {
        require(!initialized, "ALREADY_INITIALIZED");

        _name = name_;
        _symbol = symbol_;
        _decimals = decimals_;

        INITIAL_CHAIN_ID = _pureChainId();
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();

        initialized = true;
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        _balanceOf[msg.sender] = _sub(_balanceOf[msg.sender], amount);
        _balanceOf[to] = _add(_balanceOf[to], amount);

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        uint256 allowed = _allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != ~uint256(0)) _allowance[from][msg.sender] = _sub(allowed, amount);

        _balanceOf[from] = _sub(_balanceOf[from], amount);
        _balanceOf[to] = _add(_balanceOf[to], amount);

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
        public
        virtual
    {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        address recoveredAddress = ecrecover(
            keccak256(
                abi.encodePacked(
                    "\x19\x01",
                    DOMAIN_SEPARATOR(),
                    keccak256(
                        abi.encode(
                            keccak256(
                                "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                            ),
                            owner,
                            spender,
                            value,
                            nonces[owner]++,
                            deadline
                        )
                    )
                )
            ),
            v,
            r,
            s
        );

        require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

        _allowance[recoveredAddress][spender] = value;

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return _pureChainId() == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return keccak256(
            abi.encode(
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                keccak256(bytes(_name)),
                keccak256("1"),
                _pureChainId(),
                address(this)
            )
        );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        _totalSupply = _add(_totalSupply, amount);
        _balanceOf[to] = _add(_balanceOf[to], amount);

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        _balanceOf[from] = _sub(_balanceOf[from], amount);
        _totalSupply = _sub(_totalSupply, amount);

        emit Transfer(from, address(0), amount);
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL SAFE MATH LOGIC
    //////////////////////////////////////////////////////////////*/

    function _add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "ERC20: addition overflow");
        return c;
    }

    function _sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(a >= b, "ERC20: subtraction underflow");
        return a - b;
    }

    /*//////////////////////////////////////////////////////////////
                                HELPERS
    //////////////////////////////////////////////////////////////*/

    // We use this complex approach of `_viewChainId` and `_pureChainId` to ensure there are no
    // compiler warnings when accessing chain ID in any solidity version supported by forge-std. We
    // can't simply access the chain ID in a normal view or pure function because the solc View Pure
    // Checker changed `chainid` from pure to view in 0.8.0.
    function _viewChainId() private view returns (uint256 chainId) {
        // Assembly required since `block.chainid` was introduced in 0.8.0.
        assembly {
            chainId := chainid()
        }

        address(this); // Silence warnings in older Solc versions.
    }

    function _pureChainId() private pure returns (uint256 chainId) {
        function() internal view returns (uint256) fnIn = _viewChainId;
        function() internal pure returns (uint256) pureChainId;
        assembly {
            pureChainId := fnIn
        }
        chainId = pureChainId();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;

import {IERC721Metadata, IERC721TokenReceiver} from "../interfaces/IERC721.sol";

/// @notice This is a mock contract of the ERC721 standard for testing purposes only, it SHOULD NOT be used in production.
/// @dev Forked from: https://github.com/transmissions11/solmate/blob/0384dbaaa4fcb5715738a9254a7c0a4cb62cf458/src/tokens/ERC721.sol
contract MockERC721 is IERC721Metadata {
    /*//////////////////////////////////////////////////////////////
                         METADATA STORAGE/LOGIC
    //////////////////////////////////////////////////////////////*/

    string internal _name;

    string internal _symbol;

    function name() external view override returns (string memory) {
        return _name;
    }

    function symbol() external view override returns (string memory) {
        return _symbol;
    }

    function tokenURI(uint256 id) public view virtual override returns (string memory) {}

    /*//////////////////////////////////////////////////////////////
                      ERC721 BALANCE/OWNER STORAGE
    //////////////////////////////////////////////////////////////*/

    mapping(uint256 => address) internal _ownerOf;

    mapping(address => uint256) internal _balanceOf;

    function ownerOf(uint256 id) public view virtual override returns (address owner) {
        require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
    }

    function balanceOf(address owner) public view virtual override returns (uint256) {
        require(owner != address(0), "ZERO_ADDRESS");

        return _balanceOf[owner];
    }

    /*//////////////////////////////////////////////////////////////
                         ERC721 APPROVAL STORAGE
    //////////////////////////////////////////////////////////////*/

    mapping(uint256 => address) internal _getApproved;

    mapping(address => mapping(address => bool)) internal _isApprovedForAll;

    function getApproved(uint256 id) public view virtual override returns (address) {
        return _getApproved[id];
    }

    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _isApprovedForAll[owner][operator];
    }

    /*//////////////////////////////////////////////////////////////
                               INITIALIZE
    //////////////////////////////////////////////////////////////*/

    /// @dev A bool to track whether the contract has been initialized.
    bool private initialized;

    /// @dev To hide constructor warnings across solc versions due to different constructor visibility requirements and
    /// syntaxes, we add an initialization function that can be called only once.
    function initialize(string memory name_, string memory symbol_) public {
        require(!initialized, "ALREADY_INITIALIZED");

        _name = name_;
        _symbol = symbol_;

        initialized = true;
    }

    /*//////////////////////////////////////////////////////////////
                              ERC721 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 id) public payable virtual override {
        address owner = _ownerOf[id];

        require(msg.sender == owner || _isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");

        _getApproved[id] = spender;

        emit Approval(owner, spender, id);
    }

    function setApprovalForAll(address operator, bool approved) public virtual override {
        _isApprovedForAll[msg.sender][operator] = approved;

        emit ApprovalForAll(msg.sender, operator, approved);
    }

    function transferFrom(address from, address to, uint256 id) public payable virtual override {
        require(from == _ownerOf[id], "WRONG_FROM");

        require(to != address(0), "INVALID_RECIPIENT");

        require(
            msg.sender == from || _isApprovedForAll[from][msg.sender] || msg.sender == _getApproved[id],
            "NOT_AUTHORIZED"
        );

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        _balanceOf[from]--;

        _balanceOf[to]++;

        _ownerOf[id] = to;

        delete _getApproved[id];

        emit Transfer(from, to, id);
    }

    function safeTransferFrom(address from, address to, uint256 id) public payable virtual override {
        transferFrom(from, to, id);

        require(
            !_isContract(to)
                || IERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "")
                    == IERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function safeTransferFrom(address from, address to, uint256 id, bytes memory data)
        public
        payable
        virtual
        override
    {
        transferFrom(from, to, id);

        require(
            !_isContract(to)
                || IERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data)
                    == IERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    /*//////////////////////////////////////////////////////////////
                              ERC165 LOGIC
    //////////////////////////////////////////////////////////////*/

    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == 0x01ffc9a7 // ERC165 Interface ID for ERC165
            || interfaceId == 0x80ac58cd // ERC165 Interface ID for ERC721
            || interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 id) internal virtual {
        require(to != address(0), "INVALID_RECIPIENT");

        require(_ownerOf[id] == address(0), "ALREADY_MINTED");

        // Counter overflow is incredibly unrealistic.

        _balanceOf[to]++;

        _ownerOf[id] = to;

        emit Transfer(address(0), to, id);
    }

    function _burn(uint256 id) internal virtual {
        address owner = _ownerOf[id];

        require(owner != address(0), "NOT_MINTED");

        _balanceOf[owner]--;

        delete _ownerOf[id];

        delete _getApproved[id];

        emit Transfer(owner, address(0), id);
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL SAFE MINT LOGIC
    //////////////////////////////////////////////////////////////*/

    function _safeMint(address to, uint256 id) internal virtual {
        _mint(to, id);

        require(
            !_isContract(to)
                || IERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "")
                    == IERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function _safeMint(address to, uint256 id, bytes memory data) internal virtual {
        _mint(to, id);

        require(
            !_isContract(to)
                || IERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data)
                    == IERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    /*//////////////////////////////////////////////////////////////
                                HELPERS
    //////////////////////////////////////////////////////////////*/

    function _isContract(address _addr) private view returns (bool) {
        uint256 codeLength;

        // Assembly required for versions < 0.8.0 to check extcodesize.
        assembly {
            codeLength := extcodesize(_addr)
        }

        return codeLength > 0;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;

/// @dev Interface of the ERC20 standard as defined in the EIP.
/// @dev This includes the optional name, symbol, and decimals metadata.
interface IERC20 {
    /// @dev Emitted when `value` tokens are moved from one account (`from`) to another (`to`).
    event Transfer(address indexed from, address indexed to, uint256 value);

    /// @dev Emitted when the allowance of a `spender` for an `owner` is set, where `value`
    /// is the new allowance.
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /// @notice Returns the amount of tokens in existence.
    function totalSupply() external view returns (uint256);

    /// @notice Returns the amount of tokens owned by `account`.
    function balanceOf(address account) external view returns (uint256);

    /// @notice Moves `amount` tokens from the caller's account to `to`.
    function transfer(address to, uint256 amount) external returns (bool);

    /// @notice Returns the remaining number of tokens that `spender` is allowed
    /// to spend on behalf of `owner`
    function allowance(address owner, address spender) external view returns (uint256);

    /// @notice Sets `amount` as the allowance of `spender` over the caller's tokens.
    /// @dev Be aware of front-running risks: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
    function approve(address spender, uint256 amount) external returns (bool);

    /// @notice Moves `amount` tokens from `from` to `to` using the allowance mechanism.
    /// `amount` is then deducted from the caller's allowance.
    function transferFrom(address from, address to, uint256 amount) external returns (bool);

    /// @notice Returns the name of the token.
    function name() external view returns (string memory);

    /// @notice Returns the symbol of the token.
    function symbol() external view returns (string memory);

    /// @notice Returns the decimals places of the token.
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;

import "./IERC165.sol";

/// @title ERC-721 Non-Fungible Token Standard
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x80ac58cd.
interface IERC721 is IERC165 {
    /// @dev This emits when ownership of any NFT changes by any mechanism.
    /// This event emits when NFTs are created (`from` == 0) and destroyed
    /// (`to` == 0). Exception: during contract creation, any number of NFTs
    /// may be created and assigned without emitting Transfer. At the time of
    /// any transfer, the approved address for that NFT (if any) is reset to none.
    event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);

    /// @dev This emits when the approved address for an NFT is changed or
    /// reaffirmed. The zero address indicates there is no approved address.
    /// When a Transfer event emits, this also indicates that the approved
    /// address for that NFT (if any) is reset to none.
    event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);

    /// @dev This emits when an operator is enabled or disabled for an owner.
    /// The operator can manage all NFTs of the owner.
    event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);

    /// @notice Count all NFTs assigned to an owner
    /// @dev NFTs assigned to the zero address are considered invalid, and this
    /// function throws for queries about the zero address.
    /// @param _owner An address for whom to query the balance
    /// @return The number of NFTs owned by `_owner`, possibly zero
    function balanceOf(address _owner) external view returns (uint256);

    /// @notice Find the owner of an NFT
    /// @dev NFTs assigned to zero address are considered invalid, and queries
    /// about them do throw.
    /// @param _tokenId The identifier for an NFT
    /// @return The address of the owner of the NFT
    function ownerOf(uint256 _tokenId) external view returns (address);

    /// @notice Transfers the ownership of an NFT from one address to another address
    /// @dev Throws unless `msg.sender` is the current owner, an authorized
    /// operator, or the approved address for this NFT. Throws if `_from` is
    /// not the current owner. Throws if `_to` is the zero address. Throws if
    /// `_tokenId` is not a valid NFT. When transfer is complete, this function
    /// checks if `_to` is a smart contract (code size > 0). If so, it calls
    /// `onERC721Received` on `_to` and throws if the return value is not
    /// `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    /// @param data Additional data with no specified format, sent in call to `_to`
    function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;

    /// @notice Transfers the ownership of an NFT from one address to another address
    /// @dev This works identically to the other function with an extra data parameter,
    /// except this function just sets data to "".
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
    /// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
    /// THEY MAY BE PERMANENTLY LOST
    /// @dev Throws unless `msg.sender` is the current owner, an authorized
    /// operator, or the approved address for this NFT. Throws if `_from` is
    /// not the current owner. Throws if `_to` is the zero address. Throws if
    /// `_tokenId` is not a valid NFT.
    /// @param _from The current owner of the NFT
    /// @param _to The new owner
    /// @param _tokenId The NFT to transfer
    function transferFrom(address _from, address _to, uint256 _tokenId) external payable;

    /// @notice Change or reaffirm the approved address for an NFT
    /// @dev The zero address indicates there is no approved address.
    /// Throws unless `msg.sender` is the current NFT owner, or an authorized
    /// operator of the current owner.
    /// @param _approved The new approved NFT controller
    /// @param _tokenId The NFT to approve
    function approve(address _approved, uint256 _tokenId) external payable;

    /// @notice Enable or disable approval for a third party ("operator") to manage
    /// all of `msg.sender`'s assets
    /// @dev Emits the ApprovalForAll event. The contract MUST allow
    /// multiple operators per owner.
    /// @param _operator Address to add to the set of authorized operators
    /// @param _approved True if the operator is approved, false to revoke approval
    function setApprovalForAll(address _operator, bool _approved) external;

    /// @notice Get the approved address for a single NFT
    /// @dev Throws if `_tokenId` is not a valid NFT.
    /// @param _tokenId The NFT to find the approved address for
    /// @return The approved address for this NFT, or the zero address if there is none
    function getApproved(uint256 _tokenId) external view returns (address);

    /// @notice Query if an address is an authorized operator for another address
    /// @param _owner The address that owns the NFTs
    /// @param _operator The address that acts on behalf of the owner
    /// @return True if `_operator` is an approved operator for `_owner`, false otherwise
    function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}

/// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02.
interface IERC721TokenReceiver {
    /// @notice Handle the receipt of an NFT
    /// @dev The ERC721 smart contract calls this function on the recipient
    /// after a `transfer`. This function MAY throw to revert and reject the
    /// transfer. Return of other than the magic value MUST result in the
    /// transaction being reverted.
    /// Note: the contract address is always the message sender.
    /// @param _operator The address which called `safeTransferFrom` function
    /// @param _from The address which previously owned the token
    /// @param _tokenId The NFT identifier which is being transferred
    /// @param _data Additional data with no specified format
    /// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
    ///  unless throwing
    function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data)
        external
        returns (bytes4);
}

/// @title ERC-721 Non-Fungible Token Standard, optional metadata extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x5b5e139f.
interface IERC721Metadata is IERC721 {
    /// @notice A descriptive name for a collection of NFTs in this contract
    function name() external view returns (string memory _name);

    /// @notice An abbreviated name for NFTs in this contract
    function symbol() external view returns (string memory _symbol);

    /// @notice A distinct Uniform Resource Identifier (URI) for a given asset.
    /// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
    /// 3986. The URI may point to a JSON file that conforms to the "ERC721
    /// Metadata JSON Schema".
    function tokenURI(uint256 _tokenId) external view returns (string memory);
}

/// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x780e9d63.
interface IERC721Enumerable is IERC721 {
    /// @notice Count NFTs tracked by this contract
    /// @return A count of valid NFTs tracked by this contract, where each one of
    /// them has an assigned and queryable owner not equal to the zero address
    function totalSupply() external view returns (uint256);

    /// @notice Enumerate valid NFTs
    /// @dev Throws if `_index` >= `totalSupply()`.
    /// @param _index A counter less than `totalSupply()`
    /// @return The token identifier for the `_index`th NFT,
    /// (sort order not specified)
    function tokenByIndex(uint256 _index) external view returns (uint256);

    /// @notice Enumerate NFTs assigned to an owner
    /// @dev Throws if `_index` >= `balanceOf(_owner)` or if
    /// `_owner` is the zero address, representing invalid NFTs.
    /// @param _owner An address where we are interested in NFTs owned by them
    /// @param _index A counter less than `balanceOf(_owner)`
    /// @return The token identifier for the `_index`th NFT assigned to `_owner`,
    /// (sort order not specified)
    function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2;

interface IERC165 {
    /// @notice Query if a contract implements an interface
    /// @param interfaceID The interface identifier, as specified in ERC-165
    /// @dev Interface identification is specified in ERC-165. This function
    /// uses less than 30,000 gas.
    /// @return `true` if the contract implements `interfaceID` and
    /// `interfaceID` is not 0xffffffff, `false` otherwise
    function supportsInterface(bytes4 interfaceID) external view returns (bool);
}

Settings
{
  "remappings": [
    "lib/universal-router:solmate/=lib/solmate/",
    "lib/universal-router:permit2/=lib/permit2/",
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "contracts:openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "test:openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "script:openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "contracts:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
    "script:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
    "test:openzeppelin-v5/=lib/openzeppelin-contracts-v5/contracts/",
    "contracts:openzeppelin-v4/=lib/openzeppelin-contracts/contracts/",
    "contracts:openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "contracts:solmate/=lib/solmate/src/",
    "lib:solmate/=lib/solmate/",
    "script:solmate/=lib/solmate/src/",
    "contracts:permit2/=lib/permit2/src/",
    "script:permit2/=lib/permit2/src/",
    "universal-router/=lib/universal-router/contracts/",
    "multicall/=lib/multicall/src/",
    "@uniswap/v3-core/contracts/=contracts/univ3/",
    "@uniswap/v2-core/contracts/=contracts/univ2/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@ds/=lib/multicall/lib/ds-test/src/",
    "@std/=lib/multicall/lib/forge-std/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/permit2/lib/forge-gas-snapshot/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-v5/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-v5/=lib/openzeppelin-contracts-v5/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "permit2/=lib/permit2/",
    "prb-math/=lib/prb-math/src/",
    "solmate/=lib/solmate/src/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"contract IVoter","name":"voter_","type":"address"},{"internalType":"address","name":"gauge_","type":"address"},{"internalType":"address","name":"rewardToken_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxDeposit","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxMint","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxRedeem","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ERC4626ExceededMaxWithdraw","type":"error"},{"inputs":[],"name":"ReceiverNotWhitelisted","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"emissionRate","type":"uint128"},{"indexed":false,"internalType":"uint32","name":"begin","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"end","type":"uint32"}],"name":"BribeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Collect","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Collect","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"rewardToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Distribute","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"address","name":"rewardToken","type":"address"}],"name":"Poke","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint128","name":"amount","type":"uint128"}],"name":"Unstake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"uint128","name":"emissionRate","type":"uint128"},{"internalType":"uint32","name":"begin","type":"uint32"},{"internalType":"uint32","name":"end","type":"uint32"}],"name":"addBribe","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint128","name":"maxAmount","type":"uint128"}],"name":"collect","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"collectAll","outputs":[{"internalType":"uint128[]","name":"","type":"uint128[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"collectableAmount","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"collectableAmountWithUpdate","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"t","type":"uint256"}],"name":"emissionRateAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getWeight","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"outputTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"tokenInputPerSecondX128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"tokenOutputPerSecondX128","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"t","type":"uint256"}],"name":"totalEmissionAt","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"totalEmitted","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"voter","outputs":[{"internalType":"contract IVoter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

61014080604052346103f557606081613c68803803809161002082856106ff565b8339810103126103f55780516001600160a01b038116918282036103f557610056604061004f60208401610722565b9201610722565b9160206100c060086033610069876107b3565b6040519485917f566f74696e67205265636569707420666f722000000000000000000000000000828401528051918291018484015e810167207265776172647360c01b8382015203016017198101845201826106ff565b60405163561c885160e11b81526020816004815f8a5af1908115610694575f916106c1575b506040516395d89b4160e01b8152905f90829060049082906001600160a01b03165afa8015610694576026610153916020935f9161069f575b5060405193849165766f7465642d60d01b828401528051918291018484015e81015f838201520301601f1981018352826106ff565b60405163561c885160e11b81526020816004815f8b5af1908115610694575f9161065a575b5082516001600160a01b0391909116926001600160401b03821161055d5760035490600182811c92168015610650575b602083101461053f5781601f8493116105e2575b50602090601f831160011461057c575f92610571575b50508160011b915f199060031b1c1916176003555b8051906001600160401b03821161055d5760045490600182811c92168015610553575b602083101461053f5781601f8493116104d1575b50602090601f831160011461046b575f92610460575b50508160011b915f199060031b1c1916176004555b61025281610827565b9015610458575b60a0526080526040936020855161027087826106ff565b601881527f546f6b656e53747265616d456d69747465722e4443414c5000000000000000009101527fb765a13aa680e6970b613a34bc2c201fa06fb52aaa4699833f52c182126770905f9081527fbb8471eadcf4ad67b38eb641c8fc0f6191bd9198c54d548851c2c98d5314b10060c052855163561c885160e11b81529060209082906004908290865af190811561044e575f9161040b575b50855163095ea7b360e01b815260048101929092525f196024830152602090829060449082905f906001600160a01b03165af18015610401576103c9575b5060e05261010052610120525161339d90816108cb8239608051818181610c180152818161231c0152612828015260a05181610c50015260c0518161206b015260e051818181610bae015281816123f701526126bd01526101005181818161087301528181612446015261270d0152610120518181816101fe015261198c0152f35b6020813d6020116103f9575b816103e2602093836106ff565b810103126103f557518015158114610347575b5f80fd5b3d91506103d5565b85513d5f823e3d90fd5b90506020813d602011610446575b81610426602093836106ff565b810103126103f5575f91604461043d602093610722565b92505091610309565b3d9150610419565b86513d5f823e3d90fd5b506012610259565b015190505f80610234565b60045f9081528281209350601f198516905b8181106104b957509084600195949392106104a1575b505050811b01600455610249565b01515f1960f88460031b161c191690555f8080610493565b9293602060018192878601518155019501930161047d565b60045f529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81019160208510610535575b90601f859493920160051c01905b818110610527575061021e565b5f815584935060010161051a565b909150819061050c565b634e487b7160e01b5f52602260045260245ffd5b91607f169161020a565b634e487b7160e01b5f52604160045260245ffd5b015190505f806101d2565b60035f9081528281209350601f198516905b8181106105ca57509084600195949392106105b2575b505050811b016003556101e7565b01515f1960f88460031b161c191690555f80806105a4565b9293602060018192878601518155019501930161058e565b60035f529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c81019160208510610646575b90601f859493920160051c01905b81811061063857506101bc565b5f815584935060010161062b565b909150819061061d565b91607f16916101a8565b90506020813d60201161068c575b81610675602093836106ff565b810103126103f55761068690610722565b5f610178565b3d9150610668565b6040513d5f823e3d90fd5b6106bb91503d805f833e6106b381836106ff565b810190610751565b5f61011e565b90506020813d6020116106f7575b816106dc602093836106ff565b810103126103f5575f6106f0600492610722565b91506100e5565b3d91506106cf565b601f909101601f19168101906001600160401b0382119082101761055d57604052565b51906001600160a01b03821682036103f557565b6001600160401b03811161055d57601f01601f191660200190565b6020818303126103f5578051906001600160401b0382116103f5570181601f820112156103f55780519061078482610736565b9261079260405194856106ff565b828452602083830101116103f557815f9260208093018386015e8301015290565b6040516395d89b4160e01b8152905f90829060049082906001600160a01b03165afa5f918161080b575b5061080857506040516107f16040826106ff565b60078152662aa725a727aba760c91b602082015290565b90565b6108209192503d805f833e6106b381836106ff565b905f6107dd565b5f8091604051602081019063313ce56760e01b82526004815261084b6024826106ff565b51916001600160a01b03165afa3d156108c2573d9061086982610736565b9161087760405193846106ff565b82523d5f602084013e5b806108b6575b610893575b505f905f90565b6020818051810103126103f5576020015160ff811161088c579060ff6001921690565b50602081511015610887565b60609061088156fe6080806040526004361015610012575f80fd5b5f3560e01c90816301e1d114146110295750806306aba0e11461100c57806306fdde0314610f5157806307a2d13a14610226578063095ea7b314610e775780630a28a4771461063057806312d64cd314610e5257806314b40f6114610e2657806318160ddd14610e0957806320ae905b14610cfc578063220f26a414610cbb57806323b872dd14610c83578063313ce56714610c3c57806338d52e0f14610bf95780633c77882e14610bd2578063402d267d146104e357806346c96aac14610b8f57806348aed0ba14610b2a5780634cdad5061461022657806359f1930814610ac25780636e553f6514610a4257806370a08231146102b357806390901bbc14610a1b57806394bf804d1461099b57806395d89b4114610897578063a6f19c8414610854578063a9059cbb14610823578063ac6c5251146107ef578063ae2a3be31461064d578063b3d7f6b914610630578063b460af94146105aa578063ba08765214610506578063c63d75b6146104e3578063c6e6f59214610226578063ce96cb77146102b3578063d657c9e7146102e8578063d905777e146102b3578063dcb9b6b91461027f578063dd62ed3e1461022b578063ef8b30f7146102265763f7c618c1146101df575f80fd5b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b5f80fd5b610630565b346102225760403660031901126102225761024461106d565b6001600160a01b03610254611083565b91165f5260016020526001600160a01b0360405f2091165f52602052602060405f2054604051908152f35b346102225760403660031901126102225760206102ab61029d61106d565b6102a5611083565b90611f4d565b604051908152f35b346102225760203660031901126102225760206102ab6102d161106d565b6001600160a01b03165f525f60205260405f205490565b346102225760203660031901126102225761030161106d565b610309611371565b61031161195f565b8051916103366103208461121e565b9361032e60405195866110d3565b80855261121e565b602084019290601f19013684376001600160a01b038216915f5b825181101561047357806103996001600160a01b036103716001948761117a565b511684610391336001600160a01b0361038a878b61117a565b51166113e5565b913390611456565b6001600160801b036103ab838a61117a565b911690526103cc336001600160a01b036103c5848861117a565b5116611236565b9061042f575b50846001600160a01b036103e6838761117a565b51166001600160801b036103fa848b61117a565b5116906040519182527fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c360860203393a401610350565b61046d906104656001600160a01b03610448858961117a565b5116916001600160801b0361045d868d61117a565b51169061112c565b9033906115a5565b876103d2565b84865f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051918291602083019060208452518091526040830191905f5b8181106104c1575050500390f35b82516001600160801b03168452859450602093840193909201916001016104b3565b346102225760203660031901126102225760206102ab61050161106d565b6111d2565b346102225761051436611099565b919061051e611371565b6001600160a01b038316805f525f60205260405f2054908184116105775760208461054c81808988336126b1565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b83907fb94abeec000000000000000000000000000000000000000000000000000000005f5260045260245260445260645ffd5b34610222576105b836611099565b91906105c2611371565b6105dd836001600160a01b03165f525f60205260405f205490565b8083116105f45750818060209461054c93336126b1565b826001600160a01b03857ffe9cceec000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b346102225760203660031901126102225760206040516004358152f35b34610222576060366003190112610222576004356001600160801b0381168091036102225760243563ffffffff811691828203610222576044359163ffffffff831690818403610222579360014201908142116107895781116107e1575b5063ffffffff84168181101561079d5780820363ffffffff81116107895763ffffffff1683026001600160801b038116908103610789577f7779080f097bd53cad76bd3714ede1859eb34faa343baa401fda4f501ba2a37195606095610731610776936001600160a01b0361072661072161195f565b611159565b5116309033906119b0565b61073a86611a0f565b9061077161074b86600f0b8461118e565b610754846111a5565b9361076b610761826111a5565b8a600f0b9061118e565b95611a87565b611a87565b60405192835260208301526040820152a1005b634e487b7160e01b5f52601160045260245ffd5b606460405162461bcd60e51b815260206004820152601260248201527f496e76616c69642074696d652072616e676500000000000000000000000000006044820152fd5b63ffffffff169350846106ab565b3461022257602036600319011261022257602061081261080d61106d565b611933565b6001600160801b0360405191168152f35b346102225760403660031901126102225761084961083f61106d565b60243590336116c1565b602060405160018152f35b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610222575f366003190112610222576040515f6004548060011c90600181168015610991575b60208310811461097d5782855290811561095957506001146108fb575b6108f7836108eb818503826110d3565b60405191829182611043565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061093f575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610927565b60ff191660208086019190915291151560051b840190910191506108eb90506108db565b634e487b7160e01b5f52602260045260245ffd5b91607f16916108be565b34610222576040366003190112610222576004356109b7611083565b906109c0611371565b6109c9826111d2565b8082116109df575061054c818060209433612311565b916001600160a01b03907f284ff667000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610812610a3961106d565b60243590611894565b3461022257604036600319011261022257600435610a5e611083565b90610a67611371565b610a70826111d2565b808211610a86575061054c818060209433612311565b916001600160a01b03907f79012fb2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610af6610ae061106d565b610ae8611083565b90610af1611371565b6113e5565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d6001600160801b0360405191168152f35b34610222575f36600319011261022257610b4261195f565b6040518091602082016020835281518091526020604084019201905f5b818110610b6d575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610b5f565b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b346102225760403660031901126102225760206102ab610bf061106d565b60243590611835565b34610222575f3660031901126102225760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610222575f3660031901126102225760ff7f00000000000000000000000000000000000000000000000000000000000000001660ff811161078957602090604051908152f35b3461022257606036600319011261022257610849610c9f61106d565b610ca7611083565b60443591610cb68333836115ff565b6116c1565b34610222576020366003190112610222576001600160a01b03610cdc61106d565b165f52600560205260206001600160801b0360405f205416604051908152f35b3461022257606036600319011261022257610d1561106d565b610d1d611083565b604435916001600160801b03831680930361022257610d656001600160801b03602094610d48611371565b81610d5333866113e5565b16818082109118021816833384611456565b9081610d713383611236565b90610dee575b50506001600160a01b036001600160801b0360405193169384845216917fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c3608856001600160a01b0333941692a45f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b610e0291610dfb9161112c565b33836115a5565b8185610d77565b34610222575f366003190112610222576020600254604051908152f35b34610222576040366003190112610222576020610812610e4461106d565b610e4c611083565b90611109565b346102225760203660031901126102225760206102ab610e7061106d565b4290611835565b3461022257604036600319011261022257610e9061106d565b602435903315610f25576001600160a01b0316908115610ef957335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b7f94280d62000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b7fe602df05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b34610222575f366003190112610222576040515f6003548060011c90600181168015611002575b60208310811461097d578285529081156109595750600114610fa4576108f7836108eb818503826110d3565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610fe8575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610fd0565b91607f1691610f78565b34610222575f366003190112610222576020600854604051908152f35b34610222575f366003190112610222576020906002548152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361022257565b602435906001600160a01b038216820361022257565b606090600319011261022257600435906024356001600160a01b038116810361022257906044356001600160a01b03811681036102225790565b90601f8019910116810190811067ffffffffffffffff8211176110f557604052565b634e487b7160e01b5f52604160045260245ffd5b906111148183611236565b929061112757611124925061129f565b90565b505090565b906001600160801b03809116911603906001600160801b03821161078957565b9190820180921161078957565b8051156111665760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111665760209160051b010190565b90600f0b90600f0b029081600f0b91820361078957565b600f0b6f7fffffffffffffffffffffffffffffff198114610789575f0390565b9190820391821161078957565b6001600160a01b0316805f525f6020526001600160801b0360405f205411611219575f525f60205260405f20546001600160801b03036001600160801b0381116107895790565b505f90565b67ffffffffffffffff81116110f55760051b60200190565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f5260205260405f205c60018160ff1c1461128f57505f905f90565b906001600160801b036001921690565b6112a881611f84565b916001600160a01b0382165f52600b6020526001600160801b0360405f20541692836001600160801b03821611156113695761135661135d9361133e6113126112fa6001600160801b0398899661112c565b926001600160a01b03165f52600a60205260405f2090565b916001600160a01b0386165f526002830160205261133860405f20935491600854612a87565b9061114c565b61134e8460018401541695611933565b915491612aa3565b169061114c565b80821081831802181690565b505050505f90565b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6113bd5760017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b6113ef8282611236565b90611450575061112490611401611f9d565b61140a8361205b565b6002611427826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f526020526001600160801b03600160405f200154169283916115a5565b91505090565b9161152c92611463611f9d565b61146c8361205b565b6002611489826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f52602052600160405f20016001600160801b03815416956001600160801b0387811088821802881816806001600160801b03831611155f1461159b57509586945b6001600160801b038616928684611530575b50505050506001600160a01b0381165f52600b60205260405f206001600160801b03611517858284541661112c565b166001600160801b031982541617905561217d565b5090565b61154a6001600160801b03916001600160a01b039561112c565b166001600160801b031982541617905560405192835216907f1314fd112a381beea61539dbd21ec04afcff2662ac7d1b83273aade1f53d1b9760206001600160a01b03851692a35f808080866114e8565b90509586946114d6565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f526020526001600160801b0360405f209116600160ff1b17905d565b6001600160a01b03909291921691825f52600160205260405f206001600160a01b0382165f5260205260405f2054925f19841061163d575b50505050565b828410611684578015610f25576001600160a01b03821615610ef9575f5260016020526001600160a01b0360405f2091165f5260205260405f20910390555f808080611637565b506001600160a01b0383917ffb8f41b2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b906001600160a01b0382168015611822576001600160a01b0382169081156117f657805f525f60205260405f20548581106117dc578590825f525f6020520360405f2055815f525f60205260405f208581540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798578261175857505050565b6117806001600160801b0361179694168093611772611f9d565b61177b8161205b565b61324d565b611788611f9d565b6117918161205b565b61331a565b565b606460405162461bcd60e51b815260206004820152600f60248201527f76616c756520746f6f206c6172676500000000000000000000000000000000006044820152fd5b859163391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b038061184961072161195f565b51169116036112195763ffffffff8111611889575b63ffffffff61186d9116612204565b505f81600f0b13156112195760801b6001600160801b03191690565b5063ffffffff61185e565b6001600160a01b03806118a861072161195f565b51169116036112195763ffffffff8111611928575b6118cc63ffffffff8216612204565b90600f0b82810292600160ff1b81145f83121661078957818405149015171561078957600f0b905f82820392128183128116918313901516176107895761191290611a0f565b5f81600f0b12611219576001600160801b031690565b5063ffffffff6118bd565b6001600160a01b03165f52600960205260405f205460ff81166112195760081c6001600160801b031690565b6040519061196e6040836110d3565b600182526020368184013761198282611159565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169052565b9091926001600160a01b036117969481604051957f23b872dd000000000000000000000000000000000000000000000000000000006020880152166024860152166044840152606483015260648252611a0a6084836110d3565b6124db565b9081600f0b91808303611a1f5750565b7f327269a7000000000000000000000000000000000000000000000000000000005f52608060045260245260445ffd5b90600f0b90600f0b01906f7fffffffffffffffffffffffffffffff1982126f7fffffffffffffffffffffffffffffff83131761078957565b909163ffffffff82168015611f095783600f0b1580611efe575b61163757611ab0836006612548565b9290611e45575f82815260066020526040902080547fffffff00000000000000000000000000000000ffffffffffffffffff000000001663ffffffff8516177cffffffffffffffffffffffffffffffff00000000000000000000000000606888901b161781559394611b8b94600291611b429060801b6001600160801b0319166001600160801b038516176001830155565b01906001600160801b0319825416906001600160801b0316179055611b6884600661260e565b63ffffffff821680611dd7575063ffffffff1960075416176007555b60066125d6565b906006915b63ffffffff811690815f528360205263ffffffff8060405f205416165f5283602052600160405f205460601c1615611dc157815f528360205263ffffffff60405f205416805f528460205263ffffffff60405f20541692835f528560205263ffffffff60405f205460201c1682145f14611cf7575063ffffffff83165f528460205263ffffffff60405f205460401c169163ffffffff83165f5285602052600160405f205460601c1615155f14611c68575090611c50611c569286612667565b84612667565b611c60818461260e565b915b91611b90565b9492915063ffffffff8116805f528360205263ffffffff60405f205460401c1663ffffffff871614611cb9575b5090611ca4611cb49284612667565b611cae818461260e565b82612d01565b611c62565b91509350611cc78483612f97565b5f5280602052611cb463ffffffff60405f205416805f5282602052611ca463ffffffff60405f2054169250611c95565b5f848152602087815260408083205490911c63ffffffff168083529120549093919060601c60011615611d4457505090611c50611d349286612667565b611d3e818461260e565b91611c62565b9095939250815f528360205263ffffffff60405f205460201c1614611d82575b90611d72611cb49284612667565b611d7c818461260e565b82612f97565b93505082611d908183612d01565b5f5280602052611cb463ffffffff60405f205416805f5282602052611d7263ffffffff60405f205416925050611d64565b5050906117969063ffffffff6007541690612667565b8091105f14611e16575f526006602052611e118360405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b611b84565b5f526006602052611e118360405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b9192505061179692611ec263ffffffff841691825f526006602052611e7560405f2091825460681c600f0b611a4f565b7fffffff00000000000000000000000000000000ffffffffffffffffffffffffff82549160681b7cffffffffffffffffffffffffffffffff00000000000000000000000000169116179055565b5f526006602052611ede600160405f2001918254600f0b611a4f565b6001600160801b0319825416906001600160801b031617905560066125d6565b5081600f0b15611aa1565b606460405162461bcd60e51b815260206004820152600e60248201527f6b657920302072657365727665640000000000000000000000000000000000006044820152fd5b90611f5f6001600160801b0391611933565b168015611f7e57611f74611124924290611835565b9060085491612971565b50505f90565b611f8d81612a0e565b919061152c576111249150612a54565b5f5c611796575f5c60018101809111610789575f5d611fba61195f565b905f5b825181101561205657806001600160a01b03611fdb6001938661117a565b5116611fe681612ac0565b90805f52600b6020526001600160801b0360405f205416806001600160801b03841611612017575b50505001611fbd565b61202461202a918461112c565b82612b07565b5f52600b6020526001600160801b0360405f2091166001600160801b03198254161790555f808061200e565b509050565b6001600160a01b03811691825f527f000000000000000000000000000000000000000000000000000000000000000060205260405f2091825c5f5c14612177576120ac6120a661195f565b91611933565b915f5b825181101561216c57807f6ee327661a8f88f9b02f7e056d0b6bf6e3a4f6b203d1a007d1bc3e04114a682560406001600160a01b036120f06001958861117a565b511661210d816001600160a01b03165f52600a60205260405f2090565b8a5f5260028101602052825f20908682016001600160801b038061213e8d82611356818754169288548a5491612aa3565b808210818318021816166001600160801b03198254161790555490558151908a82526020820152a1016120af565b50935050505f5c905d565b50915050565b6001600160801b0383169182156113695783926121d4916001600160a01b038416805f52600560205260405f206001600160801b036121bf8882845416612ae7565b166001600160801b03198254161790556131fd565b6121dd81612a0e565b906121e9575b50505090565b6121fc926121f69161112c565b90612bb2565b805f806121e3565b60075463ffffffff165f805b63ffffffff8316928315612309578363ffffffff8616105f146122565763ffffffff91929350165f52600660205263ffffffff60405f205460201c16925b929190612210565b506122a86122ed91845f52600660205263ffffffff60405f205460201c165f5260066020526122a2600160405f20015460801d865f52600660205260405f205460681c600f0b90611a4f565b90611a4f565b91835f52600660205263ffffffff60405f205460201c165f5260066020526122a2600260405f200154600f0b855f526006602052600160405f200154600f0b90611a4f565b915f52600660205263ffffffff60405f205460401c169261224e565b509391509150565b9192906123408430857f00000000000000000000000000000000000000000000000000000000000000006119b0565b6001600160a01b0381169283156117f65761235d8360025461114c565b600255835f525f60205260405f20838154019055835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798576001600160a01b036040917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d793856124b0575b5082519487865260208601521692a36001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016803b15610222576040517fb8bc81dd0000000000000000000000000000000000000000000000000000000081527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316600482015260248101929092523060448301525f908290606490829084905af180156124a55761249b5750565b5f611796916110d3565b6040513d5f823e3d90fd5b6124d5906124bc611f9d565b6124c58161205b565b6001600160801b0387169061331a565b5f6123de565b905f602091828151910182855af1156124a5575f513d61253f57506001600160a01b0381163b155b61250a5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415612503565b919063ffffffff600184015416915f5b63ffffffff84169081156125cb57508363ffffffff84168281101561259d575063ffffffff9150165f528360205263ffffffff60405f205460201c16915b9192612558565b8210156125bf57505f528360205263ffffffff60405f205460401c1691612596565b94505091505060019190565b9450509150505f9190565b905b63ffffffff81166125e7575050565b806125f763ffffffff9284612bf9565b165f528060205263ffffffff60405f2054166125d8565b9063ffffffff8116156126635763ffffffff165f5260205261179660405f20600160ff825460601c16176cff00000000000000000000000082549160601b16906cff0000000000000000000000001916179055565b5050565b9063ffffffff8116156126635763ffffffff165f9081526020919091526040902080546cff0000000000000000000000001981166cfe000000000000000000000000909116179055565b91936001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001694853b15610222576040517fc40928d50000000000000000000000000000000000000000000000000000000081527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03166004820152602481018690523060448201525f9687908290606490829084905af180156124a5576128c5575b506001600160a01b038116956001600160a01b03851694838887036128b4575b505086156128a157868152806020526040812054838110612886578390888352826020520360408220558260025403600255867fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36001600160801b038211611798577ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db92826001600160a01b039260409461285b575b5061284c87837f00000000000000000000000000000000000000000000000000000000000000006131fd565b835196875260208701521693a4565b61288090612867611f9d565b6128708161205b565b6001600160801b0383169061324d565b5f612820565b90836064928963391434e360e21b8452600452602452604452fd5b80634b637e8f60e11b6024925280600452fd5b6128be91846115ff565b5f83612781565b6128d29196505f906110d3565b5f945f612761565b81156128e4570490565b634e487b7160e01b5f52601260045260245ffd5b818102915f915f198282099284808510940393808503941461296757837001000000000000000000000000000000001115612955575090700100000000000000000000000000000000910990828211900360801b910360801c1790565b634e487b71905260116020526024601cfd5b5050505060801c90565b91818302915f1981850993838086109503948086039514612a0157848311156129e95790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061112492506128da565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c6540060205260405f205c60018160ff1c1461128f57505f905f90565b611124906001600160a01b03612a6a4283611894565b91165f5260056020526001600160801b0360405f2054169061112c565b8015611f7e576001600160801b03196111249260801b166128da565b6001600160801b03612ab9819461135d946111c5565b91166128f8565b612ac981612a0e565b90612ae25750611124612adb82612a54565b8092612bb2565b905090565b906001600160801b03809116911601906001600160801b03821161078957565b6001600160801b038216908115612bad577fc1d32ad5cca423e7dda2123dbf8c482f8e77d00b631c06e903a47f2cec1334df916001600160a01b036020921693845f52600a835260405f2060085480155f14612b915750612b7760016001600160801b0392019282845416612ae7565b166001600160801b03198254161790555b604051908152a2565b612ba69192612b9f91612a87565b825461114c565b9055612b88565b505050565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c654006020526001600160801b0360405f209116600160ff1b17905d565b9063ffffffff8116156126635763ffffffff165f52806020526002612ce360405f2092612c70845463ffffffff808260201c16165f528260205263ffffffff80612c53600160405f20015460801d8460681c600f0b611a4f565b9260401c16165f5282602052600160405f20015460801d90611a4f565b612c99600186019182906001600160801b036001600160801b031983549260801b169116179055565b54600f0b9063ffffffff80612cc887549482808760201c16165f52846020528760405f200154600f0b90611a4f565b9360401c16165f526020528260405f200154600f0b90611a4f565b9101906001600160801b0319825416906001600160801b0316179055565b63ffffffff82165f528060205263ffffffff60405f205460201c16908115612f5357612e4e6117969363ffffffff84165f5282602052612d7b63ffffffff60405f205460401c1663ffffffff83165f528460205260405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff60405f205460401c16612f14575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff1916928616929092179091559190525416612e535760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff81165f528260205260405f2063ffffffff851663ffffffff1982541617905582612bf9565b612bf9565b63ffffffff8181165f8181526020869052604080822054841682529081902054901c90911603612eca5763ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b612def565b63ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff8060405f205460401c16165f528260205260405f2063ffffffff821663ffffffff19825416179055612d9b565b606460405162461bcd60e51b815260206004820152601160248201527f726f7461746520522077697468206e696c0000000000000000000000000000006044820152fd5b63ffffffff82165f528060205263ffffffff60405f205460401c169081156131b957612e4e6117969363ffffffff84165f528260205261300f63ffffffff60405f205460201c1663ffffffff83165f528460205260405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff60405f205460201c1661317a575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff19169286169290921790915591905254166130ba5760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff8181165f81815260208681526040808320548516835290912054901c909116036131325763ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b613083565b63ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff8060405f205460201c16165f528260205260405f2063ffffffff821663ffffffff1982541617905561302f565b606460405162461bcd60e51b815260206004820152601160248201527f726f74617465204c2077697468206e696c0000000000000000000000000000006044820152fd5b611796926001600160a01b03604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252611a0a6064836110d3565b6001600160801b038216908115612bad577f6e61fe88e0a1a236f4b1dd39cabf2d411208b9a49196f476024ea24e64ad1b879160ff6001600160a01b036020931694855f52600984526132f66132b460405f20926001600160801b03845460081c1661112c565b82547fffffffffffffffffffffffffffffff00000000000000000000000000000000ff1660089190911b70ffffffffffffffffffffffffffffffff0016178255565b54161561330657604051908152a2565b613312816008546111c5565b600855612b88565b6001600160801b038216908115612bad577ff9fc07ce486e40b9eed23e2216095abadba614696a4d573ffef1fd6c43de84839160ff6001600160a01b036020931694855f52600984526133816132b460405f20926001600160801b03845460081c16612ae7565b54161561339157604051908152a2565b6133128160085461114c56000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb40000000000000000000000000b8ce59fc3717ada4c02eadf9682a9e934f625ebb

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c90816301e1d114146110295750806306aba0e11461100c57806306fdde0314610f5157806307a2d13a14610226578063095ea7b314610e775780630a28a4771461063057806312d64cd314610e5257806314b40f6114610e2657806318160ddd14610e0957806320ae905b14610cfc578063220f26a414610cbb57806323b872dd14610c83578063313ce56714610c3c57806338d52e0f14610bf95780633c77882e14610bd2578063402d267d146104e357806346c96aac14610b8f57806348aed0ba14610b2a5780634cdad5061461022657806359f1930814610ac25780636e553f6514610a4257806370a08231146102b357806390901bbc14610a1b57806394bf804d1461099b57806395d89b4114610897578063a6f19c8414610854578063a9059cbb14610823578063ac6c5251146107ef578063ae2a3be31461064d578063b3d7f6b914610630578063b460af94146105aa578063ba08765214610506578063c63d75b6146104e3578063c6e6f59214610226578063ce96cb77146102b3578063d657c9e7146102e8578063d905777e146102b3578063dcb9b6b91461027f578063dd62ed3e1461022b578063ef8b30f7146102265763f7c618c1146101df575f80fd5b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000b8ce59fc3717ada4c02eadf9682a9e934f625ebb168152f35b5f80fd5b610630565b346102225760403660031901126102225761024461106d565b6001600160a01b03610254611083565b91165f5260016020526001600160a01b0360405f2091165f52602052602060405f2054604051908152f35b346102225760403660031901126102225760206102ab61029d61106d565b6102a5611083565b90611f4d565b604051908152f35b346102225760203660031901126102225760206102ab6102d161106d565b6001600160a01b03165f525f60205260405f205490565b346102225760203660031901126102225761030161106d565b610309611371565b61031161195f565b8051916103366103208461121e565b9361032e60405195866110d3565b80855261121e565b602084019290601f19013684376001600160a01b038216915f5b825181101561047357806103996001600160a01b036103716001948761117a565b511684610391336001600160a01b0361038a878b61117a565b51166113e5565b913390611456565b6001600160801b036103ab838a61117a565b911690526103cc336001600160a01b036103c5848861117a565b5116611236565b9061042f575b50846001600160a01b036103e6838761117a565b51166001600160801b036103fa848b61117a565b5116906040519182527fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c360860203393a401610350565b61046d906104656001600160a01b03610448858961117a565b5116916001600160801b0361045d868d61117a565b51169061112c565b9033906115a5565b876103d2565b84865f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051918291602083019060208452518091526040830191905f5b8181106104c1575050500390f35b82516001600160801b03168452859450602093840193909201916001016104b3565b346102225760203660031901126102225760206102ab61050161106d565b6111d2565b346102225761051436611099565b919061051e611371565b6001600160a01b038316805f525f60205260405f2054908184116105775760208461054c81808988336126b1565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b83907fb94abeec000000000000000000000000000000000000000000000000000000005f5260045260245260445260645ffd5b34610222576105b836611099565b91906105c2611371565b6105dd836001600160a01b03165f525f60205260405f205490565b8083116105f45750818060209461054c93336126b1565b826001600160a01b03857ffe9cceec000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b346102225760203660031901126102225760206040516004358152f35b34610222576060366003190112610222576004356001600160801b0381168091036102225760243563ffffffff811691828203610222576044359163ffffffff831690818403610222579360014201908142116107895781116107e1575b5063ffffffff84168181101561079d5780820363ffffffff81116107895763ffffffff1683026001600160801b038116908103610789577f7779080f097bd53cad76bd3714ede1859eb34faa343baa401fda4f501ba2a37195606095610731610776936001600160a01b0361072661072161195f565b611159565b5116309033906119b0565b61073a86611a0f565b9061077161074b86600f0b8461118e565b610754846111a5565b9361076b610761826111a5565b8a600f0b9061118e565b95611a87565b611a87565b60405192835260208301526040820152a1005b634e487b7160e01b5f52601160045260245ffd5b606460405162461bcd60e51b815260206004820152601260248201527f496e76616c69642074696d652072616e676500000000000000000000000000006044820152fd5b63ffffffff169350846106ab565b3461022257602036600319011261022257602061081261080d61106d565b611933565b6001600160801b0360405191168152f35b346102225760403660031901126102225761084961083f61106d565b60243590336116c1565b602060405160018152f35b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb40168152f35b34610222575f366003190112610222576040515f6004548060011c90600181168015610991575b60208310811461097d5782855290811561095957506001146108fb575b6108f7836108eb818503826110d3565b60405191829182611043565b0390f35b91905060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b915f905b80821061093f575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610927565b60ff191660208086019190915291151560051b840190910191506108eb90506108db565b634e487b7160e01b5f52602260045260245ffd5b91607f16916108be565b34610222576040366003190112610222576004356109b7611083565b906109c0611371565b6109c9826111d2565b8082116109df575061054c818060209433612311565b916001600160a01b03907f284ff667000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610812610a3961106d565b60243590611894565b3461022257604036600319011261022257600435610a5e611083565b90610a67611371565b610a70826111d2565b808211610a86575061054c818060209433612311565b916001600160a01b03907f79012fb2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b34610222576040366003190112610222576020610af6610ae061106d565b610ae8611083565b90610af1611371565b6113e5565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d6001600160801b0360405191168152f35b34610222575f36600319011261022257610b4261195f565b6040518091602082016020835281518091526020604084019201905f5b818110610b6d575050500390f35b82516001600160a01b0316845285945060209384019390920191600101610b5f565b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1168152f35b346102225760403660031901126102225760206102ab610bf061106d565b60243590611835565b34610222575f3660031901126102225760206040516001600160a01b037f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab300168152f35b34610222575f3660031901126102225760ff7f00000000000000000000000000000000000000000000000000000000000000121660ff811161078957602090604051908152f35b3461022257606036600319011261022257610849610c9f61106d565b610ca7611083565b60443591610cb68333836115ff565b6116c1565b34610222576020366003190112610222576001600160a01b03610cdc61106d565b165f52600560205260206001600160801b0360405f205416604051908152f35b3461022257606036600319011261022257610d1561106d565b610d1d611083565b604435916001600160801b03831680930361022257610d656001600160801b03602094610d48611371565b81610d5333866113e5565b16818082109118021816833384611456565b9081610d713383611236565b90610dee575b50506001600160a01b036001600160801b0360405193169384845216917fdbcaea8578bd9b272e6f31ebfd4f40792ce5c34a879ae29f76b05fc24d7c3608856001600160a01b0333941692a45f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d604051908152f35b610e0291610dfb9161112c565b33836115a5565b8185610d77565b34610222575f366003190112610222576020600254604051908152f35b34610222576040366003190112610222576020610812610e4461106d565b610e4c611083565b90611109565b346102225760203660031901126102225760206102ab610e7061106d565b4290611835565b3461022257604036600319011261022257610e9061106d565b602435903315610f25576001600160a01b0316908115610ef957335f52600160205260405f20825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b7f94280d62000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b7fe602df05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b34610222575f366003190112610222576040515f6003548060011c90600181168015611002575b60208310811461097d578285529081156109595750600114610fa4576108f7836108eb818503826110d3565b91905060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f905b808210610fe8575090915081016020016108eb6108db565b919260018160209254838588010152019101909291610fd0565b91607f1691610f78565b34610222575f366003190112610222576020600854604051908152f35b34610222575f366003190112610222576020906002548152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361022257565b602435906001600160a01b038216820361022257565b606090600319011261022257600435906024356001600160a01b038116810361022257906044356001600160a01b03811681036102225790565b90601f8019910116810190811067ffffffffffffffff8211176110f557604052565b634e487b7160e01b5f52604160045260245ffd5b906111148183611236565b929061112757611124925061129f565b90565b505090565b906001600160801b03809116911603906001600160801b03821161078957565b9190820180921161078957565b8051156111665760200190565b634e487b7160e01b5f52603260045260245ffd5b80518210156111665760209160051b010190565b90600f0b90600f0b029081600f0b91820361078957565b600f0b6f7fffffffffffffffffffffffffffffff198114610789575f0390565b9190820391821161078957565b6001600160a01b0316805f525f6020526001600160801b0360405f205411611219575f525f60205260405f20546001600160801b03036001600160801b0381116107895790565b505f90565b67ffffffffffffffff81116110f55760051b60200190565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f5260205260405f205c60018160ff1c1461128f57505f905f90565b906001600160801b036001921690565b6112a881611f84565b916001600160a01b0382165f52600b6020526001600160801b0360405f20541692836001600160801b03821611156113695761135661135d9361133e6113126112fa6001600160801b0398899661112c565b926001600160a01b03165f52600a60205260405f2090565b916001600160a01b0386165f526002830160205261133860405f20935491600854612a87565b9061114c565b61134e8460018401541695611933565b915491612aa3565b169061114c565b80821081831802181690565b505050505f90565b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6113bd5760017f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b6113ef8282611236565b90611450575061112490611401611f9d565b61140a8361205b565b6002611427826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f526020526001600160801b03600160405f200154169283916115a5565b91505090565b9161152c92611463611f9d565b61146c8361205b565b6002611489826001600160a01b03165f52600a60205260405f2090565b016001600160a01b0384165f52602052600160405f20016001600160801b03815416956001600160801b0387811088821802881816806001600160801b03831611155f1461159b57509586945b6001600160801b038616928684611530575b50505050506001600160a01b0381165f52600b60205260405f206001600160801b03611517858284541661112c565b166001600160801b031982541617905561217d565b5090565b61154a6001600160801b03916001600160a01b039561112c565b166001600160801b031982541617905560405192835216907f1314fd112a381beea61539dbd21ec04afcff2662ac7d1b83273aade1f53d1b9760206001600160a01b03851692a35f808080866114e8565b90509586946114d6565b6001600160a01b03165f527f9f1862abe01993f17760c1aaa1badf16579f4eccc1b84d72c709ceed3276aa006020526001600160a01b0360405f2091165f526020526001600160801b0360405f209116600160ff1b17905d565b6001600160a01b03909291921691825f52600160205260405f206001600160a01b0382165f5260205260405f2054925f19841061163d575b50505050565b828410611684578015610f25576001600160a01b03821615610ef9575f5260016020526001600160a01b0360405f2091165f5260205260405f20910390555f808080611637565b506001600160a01b0383917ffb8f41b2000000000000000000000000000000000000000000000000000000005f521660045260245260445260645ffd5b906001600160a01b0382168015611822576001600160a01b0382169081156117f657805f525f60205260405f20548581106117dc578590825f525f6020520360405f2055815f525f60205260405f208581540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798578261175857505050565b6117806001600160801b0361179694168093611772611f9d565b61177b8161205b565b61324d565b611788611f9d565b6117918161205b565b61331a565b565b606460405162461bcd60e51b815260206004820152600f60248201527f76616c756520746f6f206c6172676500000000000000000000000000000000006044820152fd5b859163391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b6001600160a01b038061184961072161195f565b51169116036112195763ffffffff8111611889575b63ffffffff61186d9116612204565b505f81600f0b13156112195760801b6001600160801b03191690565b5063ffffffff61185e565b6001600160a01b03806118a861072161195f565b51169116036112195763ffffffff8111611928575b6118cc63ffffffff8216612204565b90600f0b82810292600160ff1b81145f83121661078957818405149015171561078957600f0b905f82820392128183128116918313901516176107895761191290611a0f565b5f81600f0b12611219576001600160801b031690565b5063ffffffff6118bd565b6001600160a01b03165f52600960205260405f205460ff81166112195760081c6001600160801b031690565b6040519061196e6040836110d3565b600182526020368184013761198282611159565b6001600160a01b037f000000000000000000000000b8ce59fc3717ada4c02eadf9682a9e934f625ebb169052565b9091926001600160a01b036117969481604051957f23b872dd000000000000000000000000000000000000000000000000000000006020880152166024860152166044840152606483015260648252611a0a6084836110d3565b6124db565b9081600f0b91808303611a1f5750565b7f327269a7000000000000000000000000000000000000000000000000000000005f52608060045260245260445ffd5b90600f0b90600f0b01906f7fffffffffffffffffffffffffffffff1982126f7fffffffffffffffffffffffffffffff83131761078957565b909163ffffffff82168015611f095783600f0b1580611efe575b61163757611ab0836006612548565b9290611e45575f82815260066020526040902080547fffffff00000000000000000000000000000000ffffffffffffffffff000000001663ffffffff8516177cffffffffffffffffffffffffffffffff00000000000000000000000000606888901b161781559394611b8b94600291611b429060801b6001600160801b0319166001600160801b038516176001830155565b01906001600160801b0319825416906001600160801b0316179055611b6884600661260e565b63ffffffff821680611dd7575063ffffffff1960075416176007555b60066125d6565b906006915b63ffffffff811690815f528360205263ffffffff8060405f205416165f5283602052600160405f205460601c1615611dc157815f528360205263ffffffff60405f205416805f528460205263ffffffff60405f20541692835f528560205263ffffffff60405f205460201c1682145f14611cf7575063ffffffff83165f528460205263ffffffff60405f205460401c169163ffffffff83165f5285602052600160405f205460601c1615155f14611c68575090611c50611c569286612667565b84612667565b611c60818461260e565b915b91611b90565b9492915063ffffffff8116805f528360205263ffffffff60405f205460401c1663ffffffff871614611cb9575b5090611ca4611cb49284612667565b611cae818461260e565b82612d01565b611c62565b91509350611cc78483612f97565b5f5280602052611cb463ffffffff60405f205416805f5282602052611ca463ffffffff60405f2054169250611c95565b5f848152602087815260408083205490911c63ffffffff168083529120549093919060601c60011615611d4457505090611c50611d349286612667565b611d3e818461260e565b91611c62565b9095939250815f528360205263ffffffff60405f205460201c1614611d82575b90611d72611cb49284612667565b611d7c818461260e565b82612f97565b93505082611d908183612d01565b5f5280602052611cb463ffffffff60405f205416805f5282602052611d7263ffffffff60405f205416925050611d64565b5050906117969063ffffffff6007541690612667565b8091105f14611e16575f526006602052611e118360405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b611b84565b5f526006602052611e118360405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b9192505061179692611ec263ffffffff841691825f526006602052611e7560405f2091825460681c600f0b611a4f565b7fffffff00000000000000000000000000000000ffffffffffffffffffffffffff82549160681b7cffffffffffffffffffffffffffffffff00000000000000000000000000169116179055565b5f526006602052611ede600160405f2001918254600f0b611a4f565b6001600160801b0319825416906001600160801b031617905560066125d6565b5081600f0b15611aa1565b606460405162461bcd60e51b815260206004820152600e60248201527f6b657920302072657365727665640000000000000000000000000000000000006044820152fd5b90611f5f6001600160801b0391611933565b168015611f7e57611f74611124924290611835565b9060085491612971565b50505f90565b611f8d81612a0e565b919061152c576111249150612a54565b5f5c611796575f5c60018101809111610789575f5d611fba61195f565b905f5b825181101561205657806001600160a01b03611fdb6001938661117a565b5116611fe681612ac0565b90805f52600b6020526001600160801b0360405f205416806001600160801b03841611612017575b50505001611fbd565b61202461202a918461112c565b82612b07565b5f52600b6020526001600160801b0360405f2091166001600160801b03198254161790555f808061200e565b509050565b6001600160a01b03811691825f527fbb8471eadcf4ad67b38eb641c8fc0f6191bd9198c54d548851c2c98d5314b10060205260405f2091825c5f5c14612177576120ac6120a661195f565b91611933565b915f5b825181101561216c57807f6ee327661a8f88f9b02f7e056d0b6bf6e3a4f6b203d1a007d1bc3e04114a682560406001600160a01b036120f06001958861117a565b511661210d816001600160a01b03165f52600a60205260405f2090565b8a5f5260028101602052825f20908682016001600160801b038061213e8d82611356818754169288548a5491612aa3565b808210818318021816166001600160801b03198254161790555490558151908a82526020820152a1016120af565b50935050505f5c905d565b50915050565b6001600160801b0383169182156113695783926121d4916001600160a01b038416805f52600560205260405f206001600160801b036121bf8882845416612ae7565b166001600160801b03198254161790556131fd565b6121dd81612a0e565b906121e9575b50505090565b6121fc926121f69161112c565b90612bb2565b805f806121e3565b60075463ffffffff165f805b63ffffffff8316928315612309578363ffffffff8616105f146122565763ffffffff91929350165f52600660205263ffffffff60405f205460201c16925b929190612210565b506122a86122ed91845f52600660205263ffffffff60405f205460201c165f5260066020526122a2600160405f20015460801d865f52600660205260405f205460681c600f0b90611a4f565b90611a4f565b91835f52600660205263ffffffff60405f205460201c165f5260066020526122a2600260405f200154600f0b855f526006602052600160405f200154600f0b90611a4f565b915f52600660205263ffffffff60405f205460401c169261224e565b509391509150565b9192906123408430857f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab3006119b0565b6001600160a01b0381169283156117f65761235d8360025461114c565b600255835f525f60205260405f20838154019055835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051878152a36001600160801b038311611798576001600160a01b036040917fdcbc1c05240f31ff3ad067ef1ee35ce4997762752e3a095284754544f4c709d793856124b0575b5082519487865260208601521692a36001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a116803b15610222576040517fb8bc81dd0000000000000000000000000000000000000000000000000000000081527f000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb406001600160a01b0316600482015260248101929092523060448301525f908290606490829084905af180156124a55761249b5750565b5f611796916110d3565b6040513d5f823e3d90fd5b6124d5906124bc611f9d565b6124c58161205b565b6001600160801b0387169061331a565b5f6123de565b905f602091828151910182855af1156124a5575f513d61253f57506001600160a01b0381163b155b61250a5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b60011415612503565b919063ffffffff600184015416915f5b63ffffffff84169081156125cb57508363ffffffff84168281101561259d575063ffffffff9150165f528360205263ffffffff60405f205460201c16915b9192612558565b8210156125bf57505f528360205263ffffffff60405f205460401c1691612596565b94505091505060019190565b9450509150505f9190565b905b63ffffffff81166125e7575050565b806125f763ffffffff9284612bf9565b165f528060205263ffffffff60405f2054166125d8565b9063ffffffff8116156126635763ffffffff165f5260205261179660405f20600160ff825460601c16176cff00000000000000000000000082549160601b16906cff0000000000000000000000001916179055565b5050565b9063ffffffff8116156126635763ffffffff165f9081526020919091526040902080546cff0000000000000000000000001981166cfe000000000000000000000000909116179055565b91936001600160a01b037f000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a11694853b15610222576040517fc40928d50000000000000000000000000000000000000000000000000000000081527f000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb406001600160a01b03166004820152602481018690523060448201525f9687908290606490829084905af180156124a5576128c5575b506001600160a01b038116956001600160a01b03851694838887036128b4575b505086156128a157868152806020526040812054838110612886578390888352826020520360408220558260025403600255867fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36001600160801b038211611798577ffbde797d201c681b91056529119e0b02407c7bb96a4a2c75c01fc9667232c8db92826001600160a01b039260409461285b575b5061284c87837f000000000000000000000000343c40d90298e132f4ad68b4aafeada3dabab3006131fd565b835196875260208701521693a4565b61288090612867611f9d565b6128708161205b565b6001600160801b0383169061324d565b5f612820565b90836064928963391434e360e21b8452600452602452604452fd5b80634b637e8f60e11b6024925280600452fd5b6128be91846115ff565b5f83612781565b6128d29196505f906110d3565b5f945f612761565b81156128e4570490565b634e487b7160e01b5f52601260045260245ffd5b818102915f915f198282099284808510940393808503941461296757837001000000000000000000000000000000001115612955575090700100000000000000000000000000000000910990828211900360801b910360801c1790565b634e487b71905260116020526024601cfd5b5050505060801c90565b91818302915f1981850993838086109503948086039514612a0157848311156129e95790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061112492506128da565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c6540060205260405f205c60018160ff1c1461128f57505f905f90565b611124906001600160a01b03612a6a4283611894565b91165f5260056020526001600160801b0360405f2054169061112c565b8015611f7e576001600160801b03196111249260801b166128da565b6001600160801b03612ab9819461135d946111c5565b91166128f8565b612ac981612a0e565b90612ae25750611124612adb82612a54565b8092612bb2565b905090565b906001600160801b03809116911601906001600160801b03821161078957565b6001600160801b038216908115612bad577fc1d32ad5cca423e7dda2123dbf8c482f8e77d00b631c06e903a47f2cec1334df916001600160a01b036020921693845f52600a835260405f2060085480155f14612b915750612b7760016001600160801b0392019282845416612ae7565b166001600160801b03198254161790555b604051908152a2565b612ba69192612b9f91612a87565b825461114c565b9055612b88565b505050565b6001600160a01b03165f527f9bff43e48456609f6db56d12441696de4ee3adb372cd3bab07a15d4d26c654006020526001600160801b0360405f209116600160ff1b17905d565b9063ffffffff8116156126635763ffffffff165f52806020526002612ce360405f2092612c70845463ffffffff808260201c16165f528260205263ffffffff80612c53600160405f20015460801d8460681c600f0b611a4f565b9260401c16165f5282602052600160405f20015460801d90611a4f565b612c99600186019182906001600160801b036001600160801b031983549260801b169116179055565b54600f0b9063ffffffff80612cc887549482808760201c16165f52846020528760405f200154600f0b90611a4f565b9360401c16165f526020528260405f200154600f0b90611a4f565b9101906001600160801b0319825416906001600160801b0316179055565b63ffffffff82165f528060205263ffffffff60405f205460201c16908115612f5357612e4e6117969363ffffffff84165f5282602052612d7b63ffffffff60405f205460401c1663ffffffff83165f528460205260405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff60405f205460401c16612f14575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff1916928616929092179091559190525416612e535760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff81165f528260205260405f2063ffffffff851663ffffffff1982541617905582612bf9565b612bf9565b63ffffffff8181165f8181526020869052604080822054841682529081902054901c90911603612eca5763ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b612def565b63ffffffff81165f528260205263ffffffff8060405f205416165f5282602052612ec58460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff84165f528260205263ffffffff8060405f205460401c16165f528260205260405f2063ffffffff821663ffffffff19825416179055612d9b565b606460405162461bcd60e51b815260206004820152601160248201527f726f7461746520522077697468206e696c0000000000000000000000000000006044820152fd5b63ffffffff82165f528060205263ffffffff60405f205460401c169081156131b957612e4e6117969363ffffffff84165f528260205261300f63ffffffff60405f205460201c1663ffffffff83165f528460205260405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff60405f205460201c1661317a575b63ffffffff8181165f8181526020869052604080822080548986168452918320805463ffffffff19169286169290921790915591905254166130ba5760018301805463ffffffff191663ffffffff86161790555b63ffffffff84165f5282602052612e248160405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b63ffffffff8181165f81815260208681526040808320548516835290912054901c909116036131325763ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209067ffffffff0000000082549160201b169067ffffffff000000001916179055565b613083565b63ffffffff81165f528260205263ffffffff8060405f205416165f528260205261312d8460405f209063ffffffff60401b82549160401b169063ffffffff60401b1916179055565b63ffffffff84165f528260205263ffffffff8060405f205460201c16165f528260205260405f2063ffffffff821663ffffffff1982541617905561302f565b606460405162461bcd60e51b815260206004820152601160248201527f726f74617465204c2077697468206e696c0000000000000000000000000000006044820152fd5b611796926001600160a01b03604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252611a0a6064836110d3565b6001600160801b038216908115612bad577f6e61fe88e0a1a236f4b1dd39cabf2d411208b9a49196f476024ea24e64ad1b879160ff6001600160a01b036020931694855f52600984526132f66132b460405f20926001600160801b03845460081c1661112c565b82547fffffffffffffffffffffffffffffff00000000000000000000000000000000ff1660089190911b70ffffffffffffffffffffffffffffffff0016178255565b54161561330657604051908152a2565b613312816008546111c5565b600855612b88565b6001600160801b038216908115612bad577ff9fc07ce486e40b9eed23e2216095abadba614696a4d573ffef1fd6c43de84839160ff6001600160a01b036020931694855f52600984526133816132b460405f20926001600160801b03845460081c16612ae7565b54161561339157604051908152a2565b6133128160085461114c56

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb40000000000000000000000000b8ce59fc3717ada4c02eadf9682a9e934f625ebb

-----Decoded View---------------
Arg [0] : voter_ (address): 0xD883a0B7889475d362CEA8fDf588266a3da554A1
Arg [1] : gauge_ (address): 0xc555FFeab8e0e88B2587E0a75eCA8B8Ced5ccB40
Arg [2] : rewardToken_ (address): 0xB8CE59FC3717ada4C02eaDF9682A9e934F625ebb

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000d883a0b7889475d362cea8fdf588266a3da554a1
Arg [1] : 000000000000000000000000c555ffeab8e0e88b2587e0a75eca8b8ced5ccb40
Arg [2] : 000000000000000000000000b8ce59fc3717ada4c02eadf9682a9e934f625ebb


Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.