HYPE Price: $22.41 (-3.41%)
 

Overview

HYPE Balance

HyperEVM LogoHyperEVM LogoHyperEVM Logo0 HYPE

HYPE Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Deposit254554422026-01-24 22:01:1711 hrs ago1769292077IN
0x6261F301...1186AC936
0 HYPE0.000050660.4408
Deposit254552452026-01-24 21:58:0311 hrs ago1769291883IN
0x6261F301...1186AC936
0 HYPE0.000013710.1193
Deposit254424922026-01-24 18:29:0015 hrs ago1769279340IN
0x6261F301...1186AC936
0 HYPE0.000291152.205
Deposit254144792026-01-24 10:49:4622 hrs ago1769251786IN
0x6261F301...1186AC936
0 HYPE0.000365413.17911054
Deposit254141912026-01-24 10:45:0222 hrs ago1769251502IN
0x6261F301...1186AC936
0 HYPE0.000052280.4549
Deposit254138722026-01-24 10:39:4922 hrs ago1769251189IN
0x6261F301...1186AC936
0 HYPE0.000139311.212
Deposit254135842026-01-24 10:35:0522 hrs ago1769250905IN
0x6261F301...1186AC936
0 HYPE0.000164361.43
Deposit254132762026-01-24 10:30:0223 hrs ago1769250602IN
0x6261F301...1186AC936
0 HYPE0.000022980.2
Deposit254128442026-01-24 10:22:5823 hrs ago1769250178IN
0x6261F301...1186AC936
0 HYPE0.000205631.789
Deposit254114902026-01-24 10:00:4623 hrs ago1769248846IN
0x6261F301...1186AC936
0 HYPE0.000045970.4
Deposit254112672026-01-24 9:57:0623 hrs ago1769248626IN
0x6261F301...1186AC936
0 HYPE0.000076640.6668
Deposit254110322026-01-24 9:53:1523 hrs ago1769248395IN
0x6261F301...1186AC936
0 HYPE0.000037930.33
Deposit254107482026-01-24 9:48:3623 hrs ago1769248116IN
0x6261F301...1186AC936
0 HYPE0.000606555.277
Deposit254104302026-01-24 9:43:2323 hrs ago1769247803IN
0x6261F301...1186AC936
0 HYPE0.0000120.104421
Deposit254100172026-01-24 9:36:3723 hrs ago1769247397IN
0x6261F301...1186AC936
0 HYPE0.00018391.6
Deposit253683182026-01-23 22:11:3635 hrs ago1769206296IN
0x6261F301...1186AC936
0 HYPE0.000011550.10054939
Deposit253622862026-01-23 20:32:4337 hrs ago1769200363IN
0x6261F301...1186AC936
0 HYPE0.00003950.34373251
Deposit253602112026-01-23 19:58:4237 hrs ago1769198322IN
0x6261F301...1186AC936
0 HYPE0.000076010.6348
Deposit253537032026-01-23 18:12:0039 hrs ago1769191920IN
0x6261F301...1186AC936
0 HYPE0.000015020.12549716
Deposit253536562026-01-23 18:11:1439 hrs ago1769191874IN
0x6261F301...1186AC936
0 HYPE0.000014970.13030501
Deposit253477282026-01-23 16:34:0340 hrs ago1769186043IN
0x6261F301...1186AC936
0 HYPE0.000575285.005
Deposit253466292026-01-23 16:16:0241 hrs ago1769184962IN
0x6261F301...1186AC936
0 HYPE0.000207931.809
Deposit253097912026-01-23 6:12:082 days ago1769148728IN
0x6261F301...1186AC936
0 HYPE0.00001320.1
Deposit252945322026-01-23 2:02:002 days ago1769133720IN
0x6261F301...1186AC936
0 HYPE0.000025140.21
Deposit252916782026-01-23 1:15:122 days ago1769130912IN
0x6261F301...1186AC936
0 HYPE0.00001320.1
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Depositor

Compiler Version
v0.8.29+commit.ab55807c

Optimization Enabled:
Yes with 10000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.29;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { Pricer } from "./Pricer.sol";
import { Auth, Authority } from "solmate/auth/Auth.sol";

import { VaultToken } from "./VaultToken.sol";
import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol";
import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol";

contract Depositor is Auth {
    using SafeTransferLib for address;
    using FixedPointMathLib for uint256;

    uint256 public constant BASE = 1e4;
    address public depositReceiver;
    address public immutable vaultToken;
    Pricer public pricer;
    bool public isPaused;
    mapping(address => bool) public isDepositToken;
    uint256 public depositFee;
    address public depositFeeRecipient;
    uint256 public depositCap;

    error Depositor__Paused();
    error Depositor__NotDepositToken(address _token);
    error Depositor__DepositCapReached();
    error Depositor__InvalidDepositCap();

    event DepositTokenSet(address _token, bool _isDepositToken);
    event PauseToggled(bool _isPaused);
    event DepositReceiverSet(address _depositReceiver);
    event PricerSet(address _pricer);
    event DepositFeeSet(uint256 _depositFee);
    event DepositFeeRecipientSet(address _depositFeeRecipient);
    event Deposit(
        address _token,
        address _receiver,
        uint256 _amount,
        uint256 _vaultTokenAmount,
        uint256 _feeAmount,
        bytes32 _builderCode
    );
    event DepositCapSet(uint256 _depositCap);

    constructor(
        address _owner,
        address _depositReceiver,
        address _shareToken,
        address _pricer
    )
        Auth(_owner, Authority(address(0)))
    {
        depositReceiver = _depositReceiver;
        vaultToken = _shareToken;
        pricer = Pricer(_pricer);
    }

    /**
     * @notice Deposits tokens into the vault
     * @param _token The address of the token
     * @param _receiver The address of the receiver
     * @param _amount The amount of tokens to deposit
     * @param _builderCode The builder code
     */
    function deposit(address _token, address _receiver, uint256 _amount, bytes32 _builderCode) external {
        if (isPaused) {
            revert Depositor__Paused();
        }
        if (!isDepositToken[_token]) {
            revert Depositor__NotDepositToken(_token);
        }
        uint256 feeAmount;
        if (depositFee > 0 && depositFeeRecipient != address(0)) {
            feeAmount = _amount.mulDiv(depositFee, BASE);
            _token.safeTransferFrom(msg.sender, depositFeeRecipient, feeAmount);
            _amount -= feeAmount;
        }
        uint256 vaultTokenAmount = pricer.getVaultTokenAmount(_token, _amount);
        if (depositCap > 0) {
            if (VaultToken(vaultToken).totalSupply() + vaultTokenAmount > depositCap) {
                revert Depositor__DepositCapReached();
            }
        }
        _token.safeTransferFrom(msg.sender, depositReceiver, _amount);
        VaultToken(vaultToken).mint(_receiver, vaultTokenAmount);
        emit Deposit(_token, _receiver, _amount, vaultTokenAmount, feeAmount, _builderCode);
    }

    /**
     * @notice Toggles the deposit token
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _token The address of the token
     * @param _isDepositToken The status of the deposit token
     */
    function toggleDepositToken(address _token, bool _isDepositToken) external requiresAuth {
        isDepositToken[_token] = _isDepositToken;
        emit DepositTokenSet(_token, _isDepositToken);
    }

    /**
     * @notice Toggles the paused state
     * @dev Only callable by addresses with ADMIN_ROLE
     */
    function togglePaused() external requiresAuth {
        isPaused = !isPaused;
        emit PauseToggled(isPaused);
    }

    /**
     * @notice Sets the deposit receiver
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _depositReceiver The address of the deposit receiver
     */
    function setDepositReceiver(address _depositReceiver) external requiresAuth {
        depositReceiver = _depositReceiver;
        emit DepositReceiverSet(_depositReceiver);
    }

    /**
     * @notice Sets the pricer
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _pricer The address of the pricer
     */
    function setPricer(address _pricer) external requiresAuth {
        pricer = Pricer(_pricer);
        emit PricerSet(_pricer);
    }

    /**
     * @notice Sets the deposit fee
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _depositFee The deposit fee
     */
    function setDepositFee(uint256 _depositFee) external requiresAuth {
        depositFee = _depositFee;
        emit DepositFeeSet(_depositFee);
    }

    /**
     * @notice Sets the deposit fee recipient
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _depositFeeRecipient The deposit fee recipient
     */
    function setDepositFeeRecipient(address _depositFeeRecipient) external requiresAuth {
        depositFeeRecipient = _depositFeeRecipient;
        emit DepositFeeRecipientSet(_depositFeeRecipient);
    }

    /**
     * @notice Sets the deposit cap
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _depositCap The deposit cap
     */
    function setDepositCap(uint256 _depositCap) external requiresAuth {
        if (_depositCap < VaultToken(vaultToken).totalSupply()) {
            revert Depositor__InvalidDepositCap();
        }
        depositCap = _depositCap;
        emit DepositCapSet(_depositCap);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.29;

import { Auth, Authority } from "solmate/auth/Auth.sol";
import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IPriceProvider } from "./interfaces/IPriceProvider.sol";
import { SafeCastLib } from "solady/utils/SafeCastLib.sol"; // bytes memory encodedData = abi.encodeWithSelector(

import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol";

import { DepositReceiver } from "./DepositReceiver.sol";

contract Pricer is Auth {
    using FixedPointMathLib for uint256;
    using SafeCastLib for uint256;
    using SafeTransferLib for address;

    address public immutable baseAsset;
    address public immutable vaultToken;
    uint8 public immutable vaultTokenDecimals;
    uint8 public immutable baseAssetDecimals;
    uint8 public immutable decimals;
    address public depositReceiver;

    struct AssetConfig {
        IPriceProvider priceProvider;
        uint8 decimals;
        uint8 priceProviderDecimals;
    }

    struct PricerParams {
        address feeRecipient;
        uint96 highwaterMark;
        uint128 feesAccumulatedInBaseAsset;
        uint256 totalSharesLastUpdate;
        uint96 exchangeRate;
        uint16 allowedExchangeRateChangeUpper;
        uint16 allowedExchangeRateChangeLower;
        uint64 lastUpdateTimestamp;
        uint24 minimumUpdateDelayInSeconds;
        uint16 managementFee;
        uint16 performanceFee;
    }

    mapping(address => AssetConfig) public assetConfigs;
    PricerParams public pricerParams;

    error Pricer__PriceProviderNotSet(address _token);
    error Pricer__UpperBoundTooSmall();
    error Pricer__LowerBoundTooLarge();
    error Pricer__ManagementFeeTooLarge();
    error Pricer__PerformanceFeeTooLarge();
    error Pricer__ZeroAddress();
    error Pricer__ExchangeRateChecks();

    event MinimumUpdateDelayInSecondsUpdated(uint24 oldDelay, uint24 newDelay);
    event UpperBoundUpdated(uint16 oldBound, uint16 newBound);
    event LowerBoundUpdated(uint16 oldBound, uint16 newBound);
    event ManagementFeeUpdated(uint16 oldFee, uint16 newFee);
    event PerformanceFeeUpdated(uint16 oldFee, uint16 newFee);
    event FeeRecipientUpdated(address oldPayout, address newPayout);
    event ExchangeRateUpdated(uint256 oldExchangeRate, uint256 newExchangeRate, uint256 newFeesAccumulatedInBaseAsset);
    event DepositReceiverUpdated(address oldDepositReceiver, address newDepositReceiver);
    event FeesClaimed(address token, uint256 feesInToken, uint256 feesAccumulatedInBaseAsset);

    constructor(
        address _owner,
        address _baseAsset,
        address _vaultToken,
        address _feeRecipient,
        uint16 allowedExchangeRateChangeUpper,
        uint16 allowedExchangeRateChangeLower,
        uint24 minimumUpdateDelayInSeconds,
        uint16 managementFee,
        uint16 performanceFee
    )
        Auth(_owner, Authority(address(0)))
    {
        baseAsset = _baseAsset;
        vaultToken = _vaultToken;
        decimals = 8;
        vaultTokenDecimals = IERC20Metadata(vaultToken).decimals();
        baseAssetDecimals = IERC20Metadata(baseAsset).decimals();
        pricerParams = PricerParams({
            feeRecipient: _feeRecipient,
            highwaterMark: 1e8,
            feesAccumulatedInBaseAsset: 0,
            totalSharesLastUpdate: IERC20Metadata(vaultToken).totalSupply(),
            exchangeRate: 1e8,
            allowedExchangeRateChangeUpper: allowedExchangeRateChangeUpper,
            allowedExchangeRateChangeLower: allowedExchangeRateChangeLower,
            lastUpdateTimestamp: uint64(block.timestamp),
            minimumUpdateDelayInSeconds: minimumUpdateDelayInSeconds,
            managementFee: managementFee,
            performanceFee: performanceFee
        });
    }

    /**
     * @notice Gets the vault token amount for the given token and amount
     * @param _token The address of the token
     * @param _amount The amount of tokens
     * @return The amount of vault tokens
     */
    function getVaultTokenAmount(address _token, uint256 _amount) external view returns (uint256) {
        if (_token == baseAsset) {
            return _convertDecimals(
                _amount.mulDiv(10 ** decimals, pricerParams.exchangeRate), baseAssetDecimals, vaultTokenDecimals
            );
        }
        AssetConfig memory assetConfig = assetConfigs[_token];

        if (address(assetConfig.priceProvider) == address(0)) {
            revert Pricer__PriceProviderNotSet(_token);
        }
        return _convertDecimals(
            _amount * assetConfig.priceProvider.getPrice() / pricerParams.exchangeRate,
            assetConfig.decimals + assetConfig.priceProviderDecimals - decimals,
            vaultTokenDecimals
        );
    }

    /**
     * @notice Gets the asset amount for the given token and vault token amount
     * @param _token The address of the token
     * @param _vaultTokenAmount The amount of vault tokens
     * @return The amount of assets
     */
    function getAssetAmount(address _token, uint256 _vaultTokenAmount) external view returns (uint256) {
        if (_token == baseAsset) {
            return _convertDecimals(
                _vaultTokenAmount.mulDiv(pricerParams.exchangeRate, 10 ** decimals),
                vaultTokenDecimals,
                baseAssetDecimals
            );
        }
        AssetConfig memory assetConfig = assetConfigs[_token];
        if (address(assetConfig.priceProvider) == address(0)) {
            revert Pricer__PriceProviderNotSet(_token);
        }
        return _convertDecimals(
            _vaultTokenAmount.mulDiv(pricerParams.exchangeRate, assetConfig.priceProvider.getPrice()),
            vaultTokenDecimals + decimals - assetConfig.priceProviderDecimals,
            assetConfig.decimals
        );
    }

    /**
     * @notice Updates the exchange rate
     * @dev Only callable by addresses with UPDATE_EXCHANGE_RATE_ROLE
     * @param _newExchangeRate The new exchange rate
     */
    function updateExchangeRate(uint96 _newExchangeRate) external requiresAuth {
        (
            bool shouldRevert,
            PricerParams storage state,
            uint64 currentTime,
            uint256 currentExchangeRate,
            uint256 currentTotalShares
        ) = _exchangeRateChecks(_newExchangeRate);
        if (shouldRevert) revert Pricer__ExchangeRateChecks();
        uint256 newFeesAccumulatedInBaseAsset =
            _calculateFeesOwed(state, _newExchangeRate, currentTotalShares, currentTime);
        if (newFeesAccumulatedInBaseAsset > 0) {
            uint256 respectiveExchangeRate = _convertDecimals(
                newFeesAccumulatedInBaseAsset.mulDiv(10 ** vaultTokenDecimals, currentTotalShares),
                baseAssetDecimals,
                decimals
            );
            _newExchangeRate -= respectiveExchangeRate.toUint96();
        }
        pricerParams.exchangeRate = _newExchangeRate;
        pricerParams.lastUpdateTimestamp = currentTime;
        pricerParams.totalSharesLastUpdate = currentTotalShares;
        emit ExchangeRateUpdated(currentExchangeRate, _newExchangeRate, newFeesAccumulatedInBaseAsset);
    }

    /**
     * @notice Claims the fees accumulated in the base asset
     * @dev Only callable by addresses with FEE_CLAIMER_ROLE
     */
    function claimFees(address _token) external requiresAuth {
        uint256 feesAccumulatedInBaseAsset = pricerParams.feesAccumulatedInBaseAsset;
        pricerParams.feesAccumulatedInBaseAsset = 0;
        uint256 feesToSend = feesAccumulatedInBaseAsset;
        if (_token != baseAsset) {
            AssetConfig memory assetConfig = assetConfigs[_token];
            if (address(assetConfig.priceProvider) == address(0)) {
                revert Pricer__PriceProviderNotSet(_token);
            }
            feesToSend = _convertDecimals(
                feesAccumulatedInBaseAsset.mulDiv(
                    10 ** assetConfig.priceProviderDecimals, assetConfig.priceProvider.getPrice()
                ),
                baseAssetDecimals,
                assetConfig.decimals
            );
        }
        DepositReceiver(depositReceiver).sendFees(pricerParams.feeRecipient, _token, feesToSend);
        emit FeesClaimed(_token, feesToSend, feesAccumulatedInBaseAsset);
    }

    /**
     * @notice Sets the asset config
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _token The address of the token
     * @param _priceProvider The price provider
     */
    function setAssetConfig(address _token, IPriceProvider _priceProvider) external requiresAuth {
        assetConfigs[_token] = AssetConfig({
            priceProvider: _priceProvider,
            decimals: IERC20Metadata(_token).decimals(),
            priceProviderDecimals: _priceProvider.decimals()
        });
    }

    /**
     * @notice Updates the minimum update delay in seconds
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param minimumUpdateDelayInSeconds The minimum update delay in seconds
     */
    function updateDelay(uint24 minimumUpdateDelayInSeconds) external requiresAuth {
        uint24 oldDelay = pricerParams.minimumUpdateDelayInSeconds;
        pricerParams.minimumUpdateDelayInSeconds = minimumUpdateDelayInSeconds;
        emit MinimumUpdateDelayInSecondsUpdated(oldDelay, minimumUpdateDelayInSeconds);
    }

    /**
     * @notice Update the allowed upper bound change of exchange rate between `updateExchangeRateCalls`.
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param allowedExchangeRateChangeUpper The allowed exchange rate change upper
     */
    function updateUpper(uint16 allowedExchangeRateChangeUpper) external requiresAuth {
        if (allowedExchangeRateChangeUpper < 1e4) revert Pricer__UpperBoundTooSmall();
        uint16 oldBound = pricerParams.allowedExchangeRateChangeUpper;
        pricerParams.allowedExchangeRateChangeUpper = allowedExchangeRateChangeUpper;
        emit UpperBoundUpdated(oldBound, allowedExchangeRateChangeUpper);
    }

    /**
     * @notice Update the allowed lower bound change of exchange rate between `updateExchangeRateCalls`.
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param allowedExchangeRateChangeLower The allowed exchange rate change lower
     */
    function updateLower(uint16 allowedExchangeRateChangeLower) external requiresAuth {
        if (allowedExchangeRateChangeLower > 1e4) revert Pricer__LowerBoundTooLarge();
        uint16 oldBound = pricerParams.allowedExchangeRateChangeLower;
        pricerParams.allowedExchangeRateChangeLower = allowedExchangeRateChangeLower;
        emit LowerBoundUpdated(oldBound, allowedExchangeRateChangeLower);
    }

    /**
     * @notice Update the platform fee to a new value.
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param managementFee The management fee
     */
    function updateManagementFee(uint16 managementFee) external requiresAuth {
        if (managementFee > 0.2e4) revert Pricer__ManagementFeeTooLarge();
        uint16 oldFee = pricerParams.managementFee;
        pricerParams.managementFee = managementFee;
        emit ManagementFeeUpdated(oldFee, managementFee);
    }

    /**
     * @notice Update the performance fee to a new value.
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param performanceFee The performance fee
     */
    function updatePerformanceFee(uint16 performanceFee) external requiresAuth {
        if (performanceFee > 0.5e4) revert Pricer__PerformanceFeeTooLarge();
        uint16 oldFee = pricerParams.performanceFee;
        pricerParams.performanceFee = performanceFee;
        emit PerformanceFeeUpdated(oldFee, performanceFee);
    }

    /**
     * @notice Update the payout address fees are sent to.
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param feeRecipient The fee recipient
     */
    function updateFeeRecipient(address feeRecipient) external requiresAuth {
        if (feeRecipient == address(0)) revert Pricer__ZeroAddress();
        address oldFeeRecipient = pricerParams.feeRecipient;
        pricerParams.feeRecipient = feeRecipient;
        emit FeeRecipientUpdated(oldFeeRecipient, feeRecipient);
    }

    /**
     * @notice Update the deposit receiver
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _depositReceiver The deposit receiver
     */
    function updateDepositReceiver(address _depositReceiver) external requiresAuth {
        address oldDepositReceiver = depositReceiver;
        depositReceiver = _depositReceiver;
        emit DepositReceiverUpdated(oldDepositReceiver, _depositReceiver);
    }

    /*
     * @notice Get this Pricer's current rate in the base.
     * @return The current rate in the base asset
     */
    function getRate() public view returns (uint128 rate) {
        rate = pricerParams.exchangeRate;
    }

    /**
     * @notice Calculate platform fees.
     */
    function _calculateManagementFee(
        uint64 lastUpdateTimestamp,
        uint16 managementFee,
        uint96 currentExchangeRate,
        uint96 newExchangeRate,
        uint256 totalSharesSupply,
        uint256 totalSharesSupplyLastUpdate,
        uint64 currentTime
    )
        internal
        view
        returns (uint256 managementFeesAccumulatedInBaseAsset)
    {
        uint256 sharesToUse =
            totalSharesSupply < totalSharesSupplyLastUpdate ? totalSharesSupply : totalSharesSupplyLastUpdate;
        if (managementFee > 0) {
            uint256 timeDelta = currentTime - lastUpdateTimestamp;
            uint256 totalAssets = currentExchangeRate > newExchangeRate
                ? _convertDecimals(sharesToUse * newExchangeRate, vaultTokenDecimals + decimals, baseAssetDecimals)
                : _convertDecimals(sharesToUse * currentExchangeRate, vaultTokenDecimals + decimals, baseAssetDecimals);
            uint256 managementFeesAnnual = totalAssets.mulDiv(managementFee, 1e4);
            managementFeesAccumulatedInBaseAsset = managementFeesAnnual.mulDiv(timeDelta, 365 days);
        }
    }
    /**
     * @notice Calculate performance fees.
     */

    function _calculatePerformanceFee(
        uint96 newExchangeRate,
        uint256 shareTotalSupply,
        uint96 oldExchangeRate,
        uint16 performanceFee
    )
        internal
        view
        returns (uint256 performanceFeesAccumulatedInBaseAsset, uint256 yieldEarned)
    {
        uint256 changeInExchangeRate = newExchangeRate - oldExchangeRate;
        yieldEarned = _convertDecimals(
            changeInExchangeRate.mulDiv(shareTotalSupply, 10 ** vaultTokenDecimals), decimals, baseAssetDecimals
        );
        if (performanceFee > 0) {
            performanceFeesAccumulatedInBaseAsset = yieldEarned.mulDiv(performanceFee, 1e4);
        }
    }

    /**
     * @notice Check if the new exchange rate is outside of the allowed bounds or if not enough time has passed.
     */
    function _exchangeRateChecks(uint96 newExchangeRate)
        internal
        view
        returns (
            bool shouldRevert,
            PricerParams storage state,
            uint64 currentTime,
            uint256 currentExchangeRate,
            uint256 currentTotalShares
        )
    {
        state = pricerParams;
        currentTime = block.timestamp.toUint64();
        currentExchangeRate = state.exchangeRate;
        currentTotalShares = IERC20Metadata(vaultToken).totalSupply();

        shouldRevert = currentTime < state.lastUpdateTimestamp + state.minimumUpdateDelayInSeconds
            || newExchangeRate > currentExchangeRate.mulDiv(state.allowedExchangeRateChangeUpper, 1e4)
            || newExchangeRate < currentExchangeRate.mulDiv(state.allowedExchangeRateChangeLower, 1e4);
    }

    function _calculateFeesOwed(
        PricerParams storage state,
        uint96 newExchangeRate,
        uint256 currentTotalShares,
        uint64 currentTime
    )
        internal
        virtual
        returns (uint256 newFeesAccumulatedInBaseAsset)
    {
        // Update fee accounting.
        newFeesAccumulatedInBaseAsset = _calculateManagementFee(
            state.lastUpdateTimestamp,
            state.managementFee,
            state.exchangeRate,
            newExchangeRate,
            currentTotalShares,
            state.totalSharesLastUpdate,
            currentTime
        );

        // Account for performance fees.
        if (newExchangeRate > state.highwaterMark) {
            (uint256 performanceFeesAccumulatedInBaseAsset,) =
                _calculatePerformanceFee(newExchangeRate, currentTotalShares, state.highwaterMark, state.performanceFee);

            // Add performance fees to fees owed.
            newFeesAccumulatedInBaseAsset += performanceFeesAccumulatedInBaseAsset;

            state.highwaterMark = newExchangeRate;
        }

        state.feesAccumulatedInBaseAsset += newFeesAccumulatedInBaseAsset.toUint128();
    }

    /**
     * @notice Convert the decimals of the amount.
     * @param _amount The amount to change the decimals of.
     * @param _fromDecimals The decimals of the amount.
     * @param _toDecimals The decimals to change the amount to.
     * @return The amount with the new decimals.
     */
    function _convertDecimals(
        uint256 _amount,
        uint8 _fromDecimals,
        uint8 _toDecimals
    )
        internal
        pure
        returns (uint256)
    {
        if (_fromDecimals == _toDecimals) {
            return _amount;
        }
        unchecked {
            return _fromDecimals > _toDecimals
                ? _amount / 10 ** (_fromDecimals - _toDecimals)
                : _amount * 10 ** (_toDecimals - _fromDecimals);
        }
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Provides a flexible and updatable auth pattern which is completely separate from application logic.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
abstract contract Auth {
    event OwnershipTransferred(address indexed user, address indexed newOwner);

    event AuthorityUpdated(address indexed user, Authority indexed newAuthority);

    address public owner;

    Authority public authority;

    constructor(address _owner, Authority _authority) {
        owner = _owner;
        authority = _authority;

        emit OwnershipTransferred(msg.sender, _owner);
        emit AuthorityUpdated(msg.sender, _authority);
    }

    modifier requiresAuth() virtual {
        require(isAuthorized(msg.sender, msg.sig), "UNAUTHORIZED");

        _;
    }

    function isAuthorized(address user, bytes4 functionSig) internal view virtual returns (bool) {
        Authority auth = authority; // Memoizing authority saves us a warm SLOAD, around 100 gas.

        // Checking if the caller is the owner only after calling the authority saves gas in most cases, but be
        // aware that this makes protected functions uncallable even to the owner if the authority is out of order.
        return (address(auth) != address(0) && auth.canCall(user, address(this), functionSig)) || user == owner;
    }

    function setAuthority(Authority newAuthority) public virtual {
        // We check if the caller is the owner first because we want to ensure they can
        // always swap out the authority even if it's reverting or using up a lot of gas.
        require(msg.sender == owner || authority.canCall(msg.sender, address(this), msg.sig));

        authority = newAuthority;

        emit AuthorityUpdated(msg.sender, newAuthority);
    }

    function transferOwnership(address newOwner) public virtual requiresAuth {
        owner = newOwner;

        emit OwnershipTransferred(msg.sender, newOwner);
    }
}

/// @notice A generic interface for a contract which provides authorization data to an Auth instance.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
interface Authority {
    function canCall(
        address user,
        address target,
        bytes4 functionSig
    ) external view returns (bool);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.29;

import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { Auth, Authority } from "solmate/auth/Auth.sol";

contract VaultToken is ERC20, Auth {
    address public minter;
    address public burner;
    uint8 public baseAssetDecimals;

    constructor(
        string memory _name,
        string memory _symbol,
        address _owner,
        address _baseAsset
    )
        ERC20(_name, _symbol)
        Auth(_owner, Authority(address(0)))
    {
        baseAssetDecimals = IERC20Metadata(_baseAsset).decimals();
    }

    /**
     * @notice Mints tokens to an address
     * @dev Only callable by addresses with MINTER_ROLE
     * @param _to The address to mint tokens to
     * @param _amount The amount of tokens to mint
     */
    function mint(address _to, uint256 _amount) external requiresAuth {
        _mint(_to, _amount);
    }

    /**
     * @notice Burns tokens from an address
     * @dev Only callable by addresses with BURNER_ROLE
     * @param _from The address to burn tokens from
     * @param _amount The amount of tokens to burn
     */
    function burn(address _from, uint256 _amount) external requiresAuth {
        _burn(_from, _amount);
    }

    function decimals() public view override returns (uint8) {
        return baseAssetDecimals;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /// @dev The ERC20 `totalSupply` query has failed.
    error TotalSupplyQueryFailed();

    /// @dev The Permit2 operation has failed.
    error Permit2Failed();

    /// @dev The Permit2 amount must be less than `2**160 - 1`.
    error Permit2AmountOverflow();

    /// @dev The Permit2 approve operation has failed.
    error Permit2ApproveFailed();

    /// @dev The Permit2 lockdown operation has failed.
    error Permit2LockdownFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /// @dev The unique EIP-712 domain separator for the DAI token contract.
    bytes32 internal constant DAI_DOMAIN_SEPARATOR =
        0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;

    /// @dev The address for the WETH9 contract on Ethereum mainnet.
    address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

    /// @dev The canonical Permit2 address.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /// @dev The canonical address of the `SELFDESTRUCT` ETH mover.
    /// See: https://gist.github.com/Vectorized/1cb8ad4cf393b1378e08f23f79bd99fa
    /// [Etherscan](https://etherscan.io/address/0x00000000000073c48c8055bD43D1A53799176f0D)
    address internal constant ETH_MOVER = 0x00000000000073c48c8055bD43D1A53799176f0D;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Force transfers ETH to `to`, without triggering the fallback (if any).
    /// This method attempts to use a separate contract to send via `SELFDESTRUCT`,
    /// and upon failure, deploys a minimal vault to accrue the ETH.
    function safeMoveETH(address to, uint256 amount) internal returns (address vault) {
        /// @solidity memory-safe-assembly
        assembly {
            to := shr(96, shl(96, to)) // Clean upper 96 bits.
            for { let mover := ETH_MOVER } iszero(eq(to, address())) {} {
                let selfBalanceBefore := selfbalance()
                if or(lt(selfBalanceBefore, amount), eq(to, mover)) {
                    mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                    revert(0x1c, 0x04)
                }
                if extcodesize(mover) {
                    let balanceBefore := balance(to) // Check via delta, in case `SELFDESTRUCT` is bricked.
                    mstore(0x00, to)
                    pop(call(gas(), mover, amount, 0x00, 0x20, codesize(), 0x00))
                    // If `address(to).balance >= amount + balanceBefore`, skip vault workflow.
                    if iszero(lt(balance(to), add(amount, balanceBefore))) { break }
                    // Just in case `SELFDESTRUCT` is changed to not revert and do nothing.
                    if lt(selfBalanceBefore, selfbalance()) { invalid() }
                }
                let m := mload(0x40)
                // If the mover is missing or bricked, deploy a minimal vault
                // that withdraws all ETH to `to` when being called only by `to`.
                // forgefmt: disable-next-item
                mstore(add(m, 0x20), 0x33146025575b600160005260206000f35b3d3d3d3d47335af1601a5760003dfd)
                mstore(m, or(to, shl(160, 0x6035600b3d3960353df3fe73)))
                // Compute and store the bytecode hash.
                mstore8(0x00, 0xff) // Write the prefix.
                mstore(0x35, keccak256(m, 0x40))
                mstore(0x01, shl(96, address())) // Deployer.
                mstore(0x15, 0) // Salt.
                vault := keccak256(0x00, 0x55)
                pop(call(gas(), vault, amount, codesize(), 0x00, codesize(), 0x00))
                // The vault returns a single word on success. Failure reverts with empty data.
                if iszero(returndatasize()) {
                    if iszero(create2(0, m, 0x40, 0)) { revert(codesize(), codesize()) } // For gas estimation.
                }
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function trySafeTransferFrom(address token, address from, address to, uint256 amount)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                success := lt(or(iszero(extcodesize(token)), returndatasize()), success)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x34, 0) // Store 0 for the `amount`.
                    mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                    pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                    mstore(0x34, amount) // Store back the original `amount`.
                    // Retry the approval, reverting upon failure.
                    success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    if iszero(and(eq(mload(0x00), 1), success)) {
                        // Check the `extcodesize` again just in case the token selfdestructs lol.
                        if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                            mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul( // The arguments of `mul` are evaluated from right to left.
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }

    /// @dev Performs a `token.balanceOf(account)` check.
    /// `implemented` denotes whether the `token` does not implement `balanceOf`.
    /// `amount` is zero if the `token` does not implement `balanceOf`.
    function checkBalanceOf(address token, address account)
        internal
        view
        returns (bool implemented, uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            implemented :=
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                )
            amount := mul(mload(0x20), implemented)
        }
    }

    /// @dev Returns the total supply of the `token`.
    /// Reverts if the token does not exist or does not implement `totalSupply()`.
    function totalSupply(address token) internal view returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x18160ddd) // `totalSupply()`.
            if iszero(
                and(gt(returndatasize(), 0x1f), staticcall(gas(), token, 0x1c, 0x04, 0x00, 0x20))
            ) {
                mstore(0x00, 0x54cd9435) // `TotalSupplyQueryFailed()`.
                revert(0x1c, 0x04)
            }
            result := mload(0x00)
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// If the initial attempt fails, try to use Permit2 to transfer the token.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
        if (!trySafeTransferFrom(token, from, to, amount)) {
            permit2TransferFrom(token, from, to, amount);
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
    /// Reverts upon failure.
    function permit2TransferFrom(address token, address from, address to, uint256 amount)
        internal
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(add(m, 0x74), shr(96, shl(96, token)))
            mstore(add(m, 0x54), amount)
            mstore(add(m, 0x34), to)
            mstore(add(m, 0x20), shl(96, from))
            // `transferFrom(address,address,uint160,address)`.
            mstore(m, 0x36c78516000000000000000000000000)
            let p := PERMIT2
            let exists := eq(chainid(), 1)
            if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
            if iszero(
                and(
                    call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00),
                    lt(iszero(extcodesize(token)), exists) // Token has code and Permit2 exists.
                )
            ) {
                mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
            }
        }
    }

    /// @dev Permit a user to spend a given amount of
    /// another user's tokens via native EIP-2612 permit if possible, falling
    /// back to Permit2 if native permit fails or is not implemented on the token.
    function permit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        bool success;
        /// @solidity memory-safe-assembly
        assembly {
            for {} shl(96, xor(token, WETH9)) {} {
                mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                if iszero(
                    and( // The arguments of `and` are evaluated from right to left.
                        lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                        // Gas stipend to limit gas burn for tokens that don't refund gas when
                        // an non-existing function is called. 5K should be enough for a SLOAD.
                        staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                    )
                ) { break }
                // After here, we can be sure that token is a contract.
                let m := mload(0x40)
                mstore(add(m, 0x34), spender)
                mstore(add(m, 0x20), shl(96, owner))
                mstore(add(m, 0x74), deadline)
                if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                    mstore(0x14, owner)
                    mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                    mstore(
                        add(m, 0x94),
                        lt(iszero(amount), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                    )
                    mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                    // `nonces` is already at `add(m, 0x54)`.
                    // `amount != 0` is already stored at `add(m, 0x94)`.
                    mstore(add(m, 0xb4), and(0xff, v))
                    mstore(add(m, 0xd4), r)
                    mstore(add(m, 0xf4), s)
                    success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                    break
                }
                mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                mstore(add(m, 0x54), amount)
                mstore(add(m, 0x94), and(0xff, v))
                mstore(add(m, 0xb4), r)
                mstore(add(m, 0xd4), s)
                success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                break
            }
        }
        if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
    }

    /// @dev Simple permit on the Permit2 contract.
    function simplePermit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, 0x927da105) // `allowance(address,address,address)`.
            {
                let addressMask := shr(96, not(0))
                mstore(add(m, 0x20), and(addressMask, owner))
                mstore(add(m, 0x40), and(addressMask, token))
                mstore(add(m, 0x60), and(addressMask, spender))
                mstore(add(m, 0xc0), and(addressMask, spender))
            }
            let p := mul(PERMIT2, iszero(shr(160, amount)))
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                    staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                )
            ) {
                mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(p))), 0x04)
            }
            mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
            // `owner` is already `add(m, 0x20)`.
            // `token` is already at `add(m, 0x40)`.
            mstore(add(m, 0x60), amount)
            mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
            // `nonce` is already at `add(m, 0xa0)`.
            // `spender` is already at `add(m, 0xc0)`.
            mstore(add(m, 0xe0), deadline)
            mstore(add(m, 0x100), 0x100) // `signature` offset.
            mstore(add(m, 0x120), 0x41) // `signature` length.
            mstore(add(m, 0x140), r)
            mstore(add(m, 0x160), s)
            mstore(add(m, 0x180), shl(248, v))
            if iszero( // Revert if token does not have code, or if the call fails.
            mul(extcodesize(token), call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00))) {
                mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Approves `spender` to spend `amount` of `token` for `address(this)`.
    function permit2Approve(address token, address spender, uint160 amount, uint48 expiration)
        internal
    {
        /// @solidity memory-safe-assembly
        assembly {
            let addressMask := shr(96, not(0))
            let m := mload(0x40)
            mstore(m, 0x87517c45) // `approve(address,address,uint160,uint48)`.
            mstore(add(m, 0x20), and(addressMask, token))
            mstore(add(m, 0x40), and(addressMask, spender))
            mstore(add(m, 0x60), and(addressMask, amount))
            mstore(add(m, 0x80), and(0xffffffffffff, expiration))
            if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                mstore(0x00, 0x324f14ae) // `Permit2ApproveFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Revokes an approval for `token` and `spender` for `address(this)`.
    function permit2Lockdown(address token, address spender) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, 0xcc53287f) // `Permit2.lockdown`.
            mstore(add(m, 0x20), 0x20) // Offset of the `approvals`.
            mstore(add(m, 0x40), 1) // `approvals.length`.
            mstore(add(m, 0x60), shr(96, shl(96, token)))
            mstore(add(m, 0x80), shr(96, shl(96, spender)))
            if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) {
                mstore(0x00, 0x96b3de23) // `Permit2LockdownFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }
}

File 7 of 14 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/snekmate/utils/math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns `sqrt(x * y)`. Also called the geometric mean.
    function mulSqrt(uint256 x, uint256 y) internal pure returns (uint256 z) {
        if (x == y) return x;
        uint256 p = rawMul(x, y);
        if (y == rawDiv(p, x)) return sqrt(p);
        for (z = saturatingMul(rawAdd(sqrt(x), 1), rawAdd(sqrt(y), 1));; z = avg(z, p)) {
            if ((p = fullMulDivUnchecked(x, y, z)) >= z) break;
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.29;

/**
 * @title IPriceProvider
 * @notice Minimal interface for price providers used by `Pricer`.
 */
interface IPriceProvider {
    function getPrice() external view returns (uint256);
    function decimals() external view returns (uint8);
}

File 10 of 14 : SafeCastLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe integer casting library that reverts on overflow.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol)
/// @dev Optimized for runtime gas for very high number of optimizer runs (i.e. >= 1000000).
library SafeCastLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Unable to cast to the target type due to overflow.
    error Overflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*          UNSIGNED INTEGER SAFE CASTING OPERATIONS          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Casts `x` to a uint8. Reverts on overflow.
    function toUint8(uint256 x) internal pure returns (uint8) {
        if (x >= 1 << 8) _revertOverflow();
        return uint8(x);
    }

    /// @dev Casts `x` to a uint16. Reverts on overflow.
    function toUint16(uint256 x) internal pure returns (uint16) {
        if (x >= 1 << 16) _revertOverflow();
        return uint16(x);
    }

    /// @dev Casts `x` to a uint24. Reverts on overflow.
    function toUint24(uint256 x) internal pure returns (uint24) {
        if (x >= 1 << 24) _revertOverflow();
        return uint24(x);
    }

    /// @dev Casts `x` to a uint32. Reverts on overflow.
    function toUint32(uint256 x) internal pure returns (uint32) {
        if (x >= 1 << 32) _revertOverflow();
        return uint32(x);
    }

    /// @dev Casts `x` to a uint40. Reverts on overflow.
    function toUint40(uint256 x) internal pure returns (uint40) {
        if (x >= 1 << 40) _revertOverflow();
        return uint40(x);
    }

    /// @dev Casts `x` to a uint48. Reverts on overflow.
    function toUint48(uint256 x) internal pure returns (uint48) {
        if (x >= 1 << 48) _revertOverflow();
        return uint48(x);
    }

    /// @dev Casts `x` to a uint56. Reverts on overflow.
    function toUint56(uint256 x) internal pure returns (uint56) {
        if (x >= 1 << 56) _revertOverflow();
        return uint56(x);
    }

    /// @dev Casts `x` to a uint64. Reverts on overflow.
    function toUint64(uint256 x) internal pure returns (uint64) {
        if (x >= 1 << 64) _revertOverflow();
        return uint64(x);
    }

    /// @dev Casts `x` to a uint72. Reverts on overflow.
    function toUint72(uint256 x) internal pure returns (uint72) {
        if (x >= 1 << 72) _revertOverflow();
        return uint72(x);
    }

    /// @dev Casts `x` to a uint80. Reverts on overflow.
    function toUint80(uint256 x) internal pure returns (uint80) {
        if (x >= 1 << 80) _revertOverflow();
        return uint80(x);
    }

    /// @dev Casts `x` to a uint88. Reverts on overflow.
    function toUint88(uint256 x) internal pure returns (uint88) {
        if (x >= 1 << 88) _revertOverflow();
        return uint88(x);
    }

    /// @dev Casts `x` to a uint96. Reverts on overflow.
    function toUint96(uint256 x) internal pure returns (uint96) {
        if (x >= 1 << 96) _revertOverflow();
        return uint96(x);
    }

    /// @dev Casts `x` to a uint104. Reverts on overflow.
    function toUint104(uint256 x) internal pure returns (uint104) {
        if (x >= 1 << 104) _revertOverflow();
        return uint104(x);
    }

    /// @dev Casts `x` to a uint112. Reverts on overflow.
    function toUint112(uint256 x) internal pure returns (uint112) {
        if (x >= 1 << 112) _revertOverflow();
        return uint112(x);
    }

    /// @dev Casts `x` to a uint120. Reverts on overflow.
    function toUint120(uint256 x) internal pure returns (uint120) {
        if (x >= 1 << 120) _revertOverflow();
        return uint120(x);
    }

    /// @dev Casts `x` to a uint128. Reverts on overflow.
    function toUint128(uint256 x) internal pure returns (uint128) {
        if (x >= 1 << 128) _revertOverflow();
        return uint128(x);
    }

    /// @dev Casts `x` to a uint136. Reverts on overflow.
    function toUint136(uint256 x) internal pure returns (uint136) {
        if (x >= 1 << 136) _revertOverflow();
        return uint136(x);
    }

    /// @dev Casts `x` to a uint144. Reverts on overflow.
    function toUint144(uint256 x) internal pure returns (uint144) {
        if (x >= 1 << 144) _revertOverflow();
        return uint144(x);
    }

    /// @dev Casts `x` to a uint152. Reverts on overflow.
    function toUint152(uint256 x) internal pure returns (uint152) {
        if (x >= 1 << 152) _revertOverflow();
        return uint152(x);
    }

    /// @dev Casts `x` to a uint160. Reverts on overflow.
    function toUint160(uint256 x) internal pure returns (uint160) {
        if (x >= 1 << 160) _revertOverflow();
        return uint160(x);
    }

    /// @dev Casts `x` to a uint168. Reverts on overflow.
    function toUint168(uint256 x) internal pure returns (uint168) {
        if (x >= 1 << 168) _revertOverflow();
        return uint168(x);
    }

    /// @dev Casts `x` to a uint176. Reverts on overflow.
    function toUint176(uint256 x) internal pure returns (uint176) {
        if (x >= 1 << 176) _revertOverflow();
        return uint176(x);
    }

    /// @dev Casts `x` to a uint184. Reverts on overflow.
    function toUint184(uint256 x) internal pure returns (uint184) {
        if (x >= 1 << 184) _revertOverflow();
        return uint184(x);
    }

    /// @dev Casts `x` to a uint192. Reverts on overflow.
    function toUint192(uint256 x) internal pure returns (uint192) {
        if (x >= 1 << 192) _revertOverflow();
        return uint192(x);
    }

    /// @dev Casts `x` to a uint200. Reverts on overflow.
    function toUint200(uint256 x) internal pure returns (uint200) {
        if (x >= 1 << 200) _revertOverflow();
        return uint200(x);
    }

    /// @dev Casts `x` to a uint208. Reverts on overflow.
    function toUint208(uint256 x) internal pure returns (uint208) {
        if (x >= 1 << 208) _revertOverflow();
        return uint208(x);
    }

    /// @dev Casts `x` to a uint216. Reverts on overflow.
    function toUint216(uint256 x) internal pure returns (uint216) {
        if (x >= 1 << 216) _revertOverflow();
        return uint216(x);
    }

    /// @dev Casts `x` to a uint224. Reverts on overflow.
    function toUint224(uint256 x) internal pure returns (uint224) {
        if (x >= 1 << 224) _revertOverflow();
        return uint224(x);
    }

    /// @dev Casts `x` to a uint232. Reverts on overflow.
    function toUint232(uint256 x) internal pure returns (uint232) {
        if (x >= 1 << 232) _revertOverflow();
        return uint232(x);
    }

    /// @dev Casts `x` to a uint240. Reverts on overflow.
    function toUint240(uint256 x) internal pure returns (uint240) {
        if (x >= 1 << 240) _revertOverflow();
        return uint240(x);
    }

    /// @dev Casts `x` to a uint248. Reverts on overflow.
    function toUint248(uint256 x) internal pure returns (uint248) {
        if (x >= 1 << 248) _revertOverflow();
        return uint248(x);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*           SIGNED INTEGER SAFE CASTING OPERATIONS           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Casts `x` to a int8. Reverts on overflow.
    function toInt8(int256 x) internal pure returns (int8) {
        unchecked {
            if (((1 << 7) + uint256(x)) >> 8 == uint256(0)) return int8(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int16. Reverts on overflow.
    function toInt16(int256 x) internal pure returns (int16) {
        unchecked {
            if (((1 << 15) + uint256(x)) >> 16 == uint256(0)) return int16(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int24. Reverts on overflow.
    function toInt24(int256 x) internal pure returns (int24) {
        unchecked {
            if (((1 << 23) + uint256(x)) >> 24 == uint256(0)) return int24(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int32. Reverts on overflow.
    function toInt32(int256 x) internal pure returns (int32) {
        unchecked {
            if (((1 << 31) + uint256(x)) >> 32 == uint256(0)) return int32(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int40. Reverts on overflow.
    function toInt40(int256 x) internal pure returns (int40) {
        unchecked {
            if (((1 << 39) + uint256(x)) >> 40 == uint256(0)) return int40(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int48. Reverts on overflow.
    function toInt48(int256 x) internal pure returns (int48) {
        unchecked {
            if (((1 << 47) + uint256(x)) >> 48 == uint256(0)) return int48(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int56. Reverts on overflow.
    function toInt56(int256 x) internal pure returns (int56) {
        unchecked {
            if (((1 << 55) + uint256(x)) >> 56 == uint256(0)) return int56(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int64. Reverts on overflow.
    function toInt64(int256 x) internal pure returns (int64) {
        unchecked {
            if (((1 << 63) + uint256(x)) >> 64 == uint256(0)) return int64(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int72. Reverts on overflow.
    function toInt72(int256 x) internal pure returns (int72) {
        unchecked {
            if (((1 << 71) + uint256(x)) >> 72 == uint256(0)) return int72(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int80. Reverts on overflow.
    function toInt80(int256 x) internal pure returns (int80) {
        unchecked {
            if (((1 << 79) + uint256(x)) >> 80 == uint256(0)) return int80(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int88. Reverts on overflow.
    function toInt88(int256 x) internal pure returns (int88) {
        unchecked {
            if (((1 << 87) + uint256(x)) >> 88 == uint256(0)) return int88(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int96. Reverts on overflow.
    function toInt96(int256 x) internal pure returns (int96) {
        unchecked {
            if (((1 << 95) + uint256(x)) >> 96 == uint256(0)) return int96(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int104. Reverts on overflow.
    function toInt104(int256 x) internal pure returns (int104) {
        unchecked {
            if (((1 << 103) + uint256(x)) >> 104 == uint256(0)) return int104(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int112. Reverts on overflow.
    function toInt112(int256 x) internal pure returns (int112) {
        unchecked {
            if (((1 << 111) + uint256(x)) >> 112 == uint256(0)) return int112(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int120. Reverts on overflow.
    function toInt120(int256 x) internal pure returns (int120) {
        unchecked {
            if (((1 << 119) + uint256(x)) >> 120 == uint256(0)) return int120(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int128. Reverts on overflow.
    function toInt128(int256 x) internal pure returns (int128) {
        unchecked {
            if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return int128(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int136. Reverts on overflow.
    function toInt136(int256 x) internal pure returns (int136) {
        unchecked {
            if (((1 << 135) + uint256(x)) >> 136 == uint256(0)) return int136(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int144. Reverts on overflow.
    function toInt144(int256 x) internal pure returns (int144) {
        unchecked {
            if (((1 << 143) + uint256(x)) >> 144 == uint256(0)) return int144(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int152. Reverts on overflow.
    function toInt152(int256 x) internal pure returns (int152) {
        unchecked {
            if (((1 << 151) + uint256(x)) >> 152 == uint256(0)) return int152(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int160. Reverts on overflow.
    function toInt160(int256 x) internal pure returns (int160) {
        unchecked {
            if (((1 << 159) + uint256(x)) >> 160 == uint256(0)) return int160(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int168. Reverts on overflow.
    function toInt168(int256 x) internal pure returns (int168) {
        unchecked {
            if (((1 << 167) + uint256(x)) >> 168 == uint256(0)) return int168(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int176. Reverts on overflow.
    function toInt176(int256 x) internal pure returns (int176) {
        unchecked {
            if (((1 << 175) + uint256(x)) >> 176 == uint256(0)) return int176(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int184. Reverts on overflow.
    function toInt184(int256 x) internal pure returns (int184) {
        unchecked {
            if (((1 << 183) + uint256(x)) >> 184 == uint256(0)) return int184(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int192. Reverts on overflow.
    function toInt192(int256 x) internal pure returns (int192) {
        unchecked {
            if (((1 << 191) + uint256(x)) >> 192 == uint256(0)) return int192(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int200. Reverts on overflow.
    function toInt200(int256 x) internal pure returns (int200) {
        unchecked {
            if (((1 << 199) + uint256(x)) >> 200 == uint256(0)) return int200(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int208. Reverts on overflow.
    function toInt208(int256 x) internal pure returns (int208) {
        unchecked {
            if (((1 << 207) + uint256(x)) >> 208 == uint256(0)) return int208(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int216. Reverts on overflow.
    function toInt216(int256 x) internal pure returns (int216) {
        unchecked {
            if (((1 << 215) + uint256(x)) >> 216 == uint256(0)) return int216(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int224. Reverts on overflow.
    function toInt224(int256 x) internal pure returns (int224) {
        unchecked {
            if (((1 << 223) + uint256(x)) >> 224 == uint256(0)) return int224(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int232. Reverts on overflow.
    function toInt232(int256 x) internal pure returns (int232) {
        unchecked {
            if (((1 << 231) + uint256(x)) >> 232 == uint256(0)) return int232(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int240. Reverts on overflow.
    function toInt240(int256 x) internal pure returns (int240) {
        unchecked {
            if (((1 << 239) + uint256(x)) >> 240 == uint256(0)) return int240(x);
            _revertOverflow();
        }
    }

    /// @dev Casts `x` to a int248. Reverts on overflow.
    function toInt248(int256 x) internal pure returns (int248) {
        unchecked {
            if (((1 << 247) + uint256(x)) >> 248 == uint256(0)) return int248(x);
            _revertOverflow();
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               OTHER SAFE CASTING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Casts `x` to a int8. Reverts on overflow.
    function toInt8(uint256 x) internal pure returns (int8) {
        if (x >= 1 << 7) _revertOverflow();
        return int8(int256(x));
    }

    /// @dev Casts `x` to a int16. Reverts on overflow.
    function toInt16(uint256 x) internal pure returns (int16) {
        if (x >= 1 << 15) _revertOverflow();
        return int16(int256(x));
    }

    /// @dev Casts `x` to a int24. Reverts on overflow.
    function toInt24(uint256 x) internal pure returns (int24) {
        if (x >= 1 << 23) _revertOverflow();
        return int24(int256(x));
    }

    /// @dev Casts `x` to a int32. Reverts on overflow.
    function toInt32(uint256 x) internal pure returns (int32) {
        if (x >= 1 << 31) _revertOverflow();
        return int32(int256(x));
    }

    /// @dev Casts `x` to a int40. Reverts on overflow.
    function toInt40(uint256 x) internal pure returns (int40) {
        if (x >= 1 << 39) _revertOverflow();
        return int40(int256(x));
    }

    /// @dev Casts `x` to a int48. Reverts on overflow.
    function toInt48(uint256 x) internal pure returns (int48) {
        if (x >= 1 << 47) _revertOverflow();
        return int48(int256(x));
    }

    /// @dev Casts `x` to a int56. Reverts on overflow.
    function toInt56(uint256 x) internal pure returns (int56) {
        if (x >= 1 << 55) _revertOverflow();
        return int56(int256(x));
    }

    /// @dev Casts `x` to a int64. Reverts on overflow.
    function toInt64(uint256 x) internal pure returns (int64) {
        if (x >= 1 << 63) _revertOverflow();
        return int64(int256(x));
    }

    /// @dev Casts `x` to a int72. Reverts on overflow.
    function toInt72(uint256 x) internal pure returns (int72) {
        if (x >= 1 << 71) _revertOverflow();
        return int72(int256(x));
    }

    /// @dev Casts `x` to a int80. Reverts on overflow.
    function toInt80(uint256 x) internal pure returns (int80) {
        if (x >= 1 << 79) _revertOverflow();
        return int80(int256(x));
    }

    /// @dev Casts `x` to a int88. Reverts on overflow.
    function toInt88(uint256 x) internal pure returns (int88) {
        if (x >= 1 << 87) _revertOverflow();
        return int88(int256(x));
    }

    /// @dev Casts `x` to a int96. Reverts on overflow.
    function toInt96(uint256 x) internal pure returns (int96) {
        if (x >= 1 << 95) _revertOverflow();
        return int96(int256(x));
    }

    /// @dev Casts `x` to a int104. Reverts on overflow.
    function toInt104(uint256 x) internal pure returns (int104) {
        if (x >= 1 << 103) _revertOverflow();
        return int104(int256(x));
    }

    /// @dev Casts `x` to a int112. Reverts on overflow.
    function toInt112(uint256 x) internal pure returns (int112) {
        if (x >= 1 << 111) _revertOverflow();
        return int112(int256(x));
    }

    /// @dev Casts `x` to a int120. Reverts on overflow.
    function toInt120(uint256 x) internal pure returns (int120) {
        if (x >= 1 << 119) _revertOverflow();
        return int120(int256(x));
    }

    /// @dev Casts `x` to a int128. Reverts on overflow.
    function toInt128(uint256 x) internal pure returns (int128) {
        if (x >= 1 << 127) _revertOverflow();
        return int128(int256(x));
    }

    /// @dev Casts `x` to a int136. Reverts on overflow.
    function toInt136(uint256 x) internal pure returns (int136) {
        if (x >= 1 << 135) _revertOverflow();
        return int136(int256(x));
    }

    /// @dev Casts `x` to a int144. Reverts on overflow.
    function toInt144(uint256 x) internal pure returns (int144) {
        if (x >= 1 << 143) _revertOverflow();
        return int144(int256(x));
    }

    /// @dev Casts `x` to a int152. Reverts on overflow.
    function toInt152(uint256 x) internal pure returns (int152) {
        if (x >= 1 << 151) _revertOverflow();
        return int152(int256(x));
    }

    /// @dev Casts `x` to a int160. Reverts on overflow.
    function toInt160(uint256 x) internal pure returns (int160) {
        if (x >= 1 << 159) _revertOverflow();
        return int160(int256(x));
    }

    /// @dev Casts `x` to a int168. Reverts on overflow.
    function toInt168(uint256 x) internal pure returns (int168) {
        if (x >= 1 << 167) _revertOverflow();
        return int168(int256(x));
    }

    /// @dev Casts `x` to a int176. Reverts on overflow.
    function toInt176(uint256 x) internal pure returns (int176) {
        if (x >= 1 << 175) _revertOverflow();
        return int176(int256(x));
    }

    /// @dev Casts `x` to a int184. Reverts on overflow.
    function toInt184(uint256 x) internal pure returns (int184) {
        if (x >= 1 << 183) _revertOverflow();
        return int184(int256(x));
    }

    /// @dev Casts `x` to a int192. Reverts on overflow.
    function toInt192(uint256 x) internal pure returns (int192) {
        if (x >= 1 << 191) _revertOverflow();
        return int192(int256(x));
    }

    /// @dev Casts `x` to a int200. Reverts on overflow.
    function toInt200(uint256 x) internal pure returns (int200) {
        if (x >= 1 << 199) _revertOverflow();
        return int200(int256(x));
    }

    /// @dev Casts `x` to a int208. Reverts on overflow.
    function toInt208(uint256 x) internal pure returns (int208) {
        if (x >= 1 << 207) _revertOverflow();
        return int208(int256(x));
    }

    /// @dev Casts `x` to a int216. Reverts on overflow.
    function toInt216(uint256 x) internal pure returns (int216) {
        if (x >= 1 << 215) _revertOverflow();
        return int216(int256(x));
    }

    /// @dev Casts `x` to a int224. Reverts on overflow.
    function toInt224(uint256 x) internal pure returns (int224) {
        if (x >= 1 << 223) _revertOverflow();
        return int224(int256(x));
    }

    /// @dev Casts `x` to a int232. Reverts on overflow.
    function toInt232(uint256 x) internal pure returns (int232) {
        if (x >= 1 << 231) _revertOverflow();
        return int232(int256(x));
    }

    /// @dev Casts `x` to a int240. Reverts on overflow.
    function toInt240(uint256 x) internal pure returns (int240) {
        if (x >= 1 << 239) _revertOverflow();
        return int240(int256(x));
    }

    /// @dev Casts `x` to a int248. Reverts on overflow.
    function toInt248(uint256 x) internal pure returns (int248) {
        if (x >= 1 << 247) _revertOverflow();
        return int248(int256(x));
    }

    /// @dev Casts `x` to a int256. Reverts on overflow.
    function toInt256(uint256 x) internal pure returns (int256) {
        if (int256(x) >= 0) return int256(x);
        _revertOverflow();
    }

    /// @dev Casts `x` to a uint256. Reverts on overflow.
    function toUint256(int256 x) internal pure returns (uint256) {
        if (x >= 0) return uint256(x);
        _revertOverflow();
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _revertOverflow() private pure {
        /// @solidity memory-safe-assembly
        assembly {
            // Store the function selector of `Overflow()`.
            mstore(0x00, 0x35278d12)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.29;

import { Auth, Authority } from "solmate/auth/Auth.sol";
import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol";

contract DepositReceiver is Auth {
    using SafeTransferLib for address;

    mapping(address => bool) public isDnCoreWriter;
    address public withdrawalQueue;
    address public pricer;

    error DepositReceiver__OnlyWithdrawalQueue();
    error DepositReceiver__NotDnCoreWriter(address _dnCoreWriter);
    error DepositReceiver__OnlyPricer();

    event WithdrawalQueueSet(address _withdrawalQueue);
    event PricerSet(address _pricer);
    event DnCoreWriterSet(address _dnCoreWriter, bool _isDnCoreWriter);
    event AssetsSentToDnCoreWriter(address _dnCoreWriter, address _token, uint256 _amount);
    event FeesSent(address _feeRecipient, address _token, uint256 _amount);

    modifier onlyWithdrawalQueue() {
        if (msg.sender != withdrawalQueue) {
            revert DepositReceiver__OnlyWithdrawalQueue();
        }
        _;
    }

    modifier onlyPricer() {
        if (msg.sender != pricer) {
            revert DepositReceiver__OnlyPricer();
        }
        _;
    }

    constructor(address _owner, address _withdrawalQueue) Auth(_owner, Authority(address(0))) {
        withdrawalQueue = _withdrawalQueue;
    }

    /**
     * @notice Sends assets for instant withdrawal
     * @dev Only callable by addresses with WITHDRAWAL_QUEUE_ROLE
     * @param _token The address of the token
     * @param _user The address of the user
     * @param _amount The amount of tokens to send
     */
    function sendAssetsForInstantWithdrawal(
        address _token,
        address _user,
        uint256 _amount
    )
        external
        onlyWithdrawalQueue
    {
        _token.safeTransfer(_user, _amount);
    }

    /**
     * @notice Sends fees to the fee recipient
     * @dev Only callable by addresses with PRICER
     * @param _feeRecipient The address of the fee recipient
     * @param _token The address of the token
     * @param _amount The amount of tokens to send
     */
    function sendFees(address _feeRecipient, address _token, uint256 _amount) external onlyPricer {
        _token.safeTransfer(_feeRecipient, _amount);
        emit FeesSent(_feeRecipient, _token, _amount);
    }

    /**
     * @notice Sends assets to the DnCoreWriter
     * @dev Only callable by addresses with ALLOCATOR_ROLE
     * @param _dnCoreWriter The address of the DnCoreWriter
     * @param _token The address of the token
     * @param _amount The amount of tokens to send
     */
    function sendAssetsToDnCoreWriter(address _dnCoreWriter, address _token, uint256 _amount) external requiresAuth {
        if (!isDnCoreWriter[_dnCoreWriter]) {
            revert DepositReceiver__NotDnCoreWriter(_dnCoreWriter);
        }
        _token.safeTransfer(_dnCoreWriter, _amount);
        emit AssetsSentToDnCoreWriter(_dnCoreWriter, _token, _amount);
    }

    /**
     * @notice Sets the DnCoreWriter
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _dnCoreWriter The address of the DnCoreWriter
     * @param _isDnCoreWriter The status of the DnCoreWriter
     */
    function setDnCoreWriter(address _dnCoreWriter, bool _isDnCoreWriter) external requiresAuth {
        isDnCoreWriter[_dnCoreWriter] = _isDnCoreWriter;
        emit DnCoreWriterSet(_dnCoreWriter, _isDnCoreWriter);
    }

    /**
     * @notice Sets the WithdrawalQueue
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _withdrawalQueue The address of the WithdrawalQueue
     */
    function setWithdrawalQueue(address _withdrawalQueue) external requiresAuth {
        withdrawalQueue = _withdrawalQueue;
        emit WithdrawalQueueSet(_withdrawalQueue);
    }

    /**
     * @notice Sets the Pricer
     * @dev Only callable by addresses with ADMIN_ROLE
     * @param _pricer The address of the Pricer
     */
    function setPricer(address _pricer) external requiresAuth {
        pricer = _pricer;
        emit PricerSet(_pricer);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
    "@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/",
    "forge-std/=lib/forge-std/",
    "solmate/=node_modules/solmate/src/",
    "solady/=node_modules/solady/src/",
    "layerzerolabs/=node_modules/@layerzerolabs/",
    "@axelar-network/=node_modules/@axelar-network/",
    "@chainlink/=node_modules/@chainlink/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@layerzerolabs/=node_modules/@layerzerolabs/",
    "hardhat-deploy/=node_modules/hardhat-deploy/",
    "solidity-bytes-utils/=node_modules/solidity-bytes-utils/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_depositReceiver","type":"address"},{"internalType":"address","name":"_shareToken","type":"address"},{"internalType":"address","name":"_pricer","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Depositor__DepositCapReached","type":"error"},{"inputs":[],"name":"Depositor__InvalidDepositCap","type":"error"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"Depositor__NotDepositToken","type":"error"},{"inputs":[],"name":"Depositor__Paused","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_token","type":"address"},{"indexed":false,"internalType":"address","name":"_receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"_amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_vaultTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_feeAmount","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"_builderCode","type":"bytes32"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_depositCap","type":"uint256"}],"name":"DepositCapSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_depositFeeRecipient","type":"address"}],"name":"DepositFeeRecipientSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_depositFee","type":"uint256"}],"name":"DepositFeeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_depositReceiver","type":"address"}],"name":"DepositReceiverSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_token","type":"address"},{"indexed":false,"internalType":"bool","name":"_isDepositToken","type":"bool"}],"name":"DepositTokenSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"_isPaused","type":"bool"}],"name":"PauseToggled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_pricer","type":"address"}],"name":"PricerSet","type":"event"},{"inputs":[],"name":"BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract Authority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes32","name":"_builderCode","type":"bytes32"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isDepositToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pricer","outputs":[{"internalType":"contract Pricer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_depositCap","type":"uint256"}],"name":"setDepositCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_depositFee","type":"uint256"}],"name":"setDepositFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_depositFeeRecipient","type":"address"}],"name":"setDepositFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_depositReceiver","type":"address"}],"name":"setDepositReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pricer","type":"address"}],"name":"setPricer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"bool","name":"_isDepositToken","type":"bool"}],"name":"toggleDepositToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"togglePaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vaultToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60a060405234801561000f575f5ffd5b5060405161163c38038061163c83398101604081905261002e9161010d565b5f80546001600160a01b0386166001600160a01b031991821681178355600180549092169091556040518692919033907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908490a36040516001600160a01b0382169033907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a35050600280546001600160a01b039485166001600160a01b031991821617909155918316608052600380549190931691161790555061015e565b80516001600160a01b0381168114610108575f5ffd5b919050565b5f5f5f5f60808587031215610120575f5ffd5b610129856100f2565b9350610137602086016100f2565b9250610145604086016100f2565b9150610153606086016100f2565b905092959194509250565b6080516114b161018b5f395f81816101e901528181610a8e01528181610d740152610eb601526114b15ff3fe608060405234801561000f575f5ffd5b506004361061016e575f3560e01c80638da5cb5b116100d2578063c98444f711610088578063f2fde38b11610063578063f2fde38b14610351578063fb19674414610364578063fc8c085114610377575f5ffd5b8063c98444f71461032c578063dbd5edc71461033f578063ec342ad014610348575f5ffd5b8063b187bd26116100b8578063b187bd26146102b5578063b89e45b3146102ea578063bf7e214f1461030c575f5ffd5b80638da5cb5b14610276578063a6138ed914610295575f5ffd5b806367a5279311610127578063781faf641161010d578063781faf64146102305780637a9e5e4b146102505780638665120314610263575f5ffd5b806367a52793146101c8578063703bafd5146101e4575f5ffd5b80632b5d5e76116101575780632b5d5e761461019a57806336566f06146101ad578063490ae210146101b5575f5ffd5b8063169aa7a1146101725780632939037014610187575b5f5ffd5b61018561018036600461135f565b610397565b005b61018561019536600461135f565b6104a9565b6101856101a836600461135f565b6105af565b6101856106b5565b6101856101c3366004611381565b6107da565b6101d160055481565b6040519081526020015b60405180910390f35b61020b7f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101db565b60065461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b61018561025e36600461135f565b6108a2565b610185610271366004611381565b6109f9565b5f5461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b60035461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b6003546102da9074010000000000000000000000000000000000000000900460ff1681565b60405190151581526020016101db565b6102da6102f836600461135f565b60046020525f908152604090205460ff1681565b60015461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b61018561033a366004611398565b610b87565b6101d160075481565b6101d161271081565b61018561035f36600461135f565b610f83565b6101856103723660046113e8565b611085565b60025461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b6103c4335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61042f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a4544000000000000000000000000000000000000000060448201526064015b60405180910390fd5b600680547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f03e6c71d53bf39da326d7719c08317fb6795eac73a21294f40d4f0ba018676d2906020015b60405180910390a150565b6104d6335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61053c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f4a579f38821049fee42080c3d82d1034d90dd69fd37058c01927bbf274e45cc09060200161049e565b6105dc335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610642576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b600280547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f0a09ed5750cec23e3b4401aa37887445567dec654641ada89a1acfe1425c31ff9060200161049e565b6106e2335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610748576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b6003805460ff7401000000000000000000000000000000000000000080830482161581027fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217928390556040517f9077d36bc00859b5c3f320310707208543dd35092cb0a0fe117d0c6a558b148b936107d09390049091161515815260200190565b60405180910390a1565b610807335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61086d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b60058190556040518181527f12865465a7036a0232cbf9fb63ce880a3ee54f702775fe7abbc3c416e7968cd59060200161049e565b5f5473ffffffffffffffffffffffffffffffffffffffff1633148061098157506001546040517fb70096130000000000000000000000000000000000000000000000000000000081523360048201523060248201525f357fffffffff0000000000000000000000000000000000000000000000000000000016604482015273ffffffffffffffffffffffffffffffffffffffff9091169063b700961390606401602060405180830381865afa15801561095d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610981919061141f565b610989575f5ffd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff831690811790915560405133907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a350565b610a26335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610a8c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af5573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b19919061143a565b811015610b52576040517f4a60b34800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60078190556040518181527f50e5341d7a4ad030a1a03c7b2bccfa67438c0bdf5c398a3b1d7a64babfbf97fe9060200161049e565b60035474010000000000000000000000000000000000000000900460ff1615610bdc576040517fc100b5ef00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff84165f9081526004602052604090205460ff16610c52576040517f57ef27fa00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602401610426565b5f5f600554118015610c7b575060065473ffffffffffffffffffffffffffffffffffffffff1615155b15610cca57600554610c919084906127106112b4565b600654909150610cbd9073ffffffffffffffffffffffffffffffffffffffff87811691339116846112d9565b610cc7818461147e565b92505b6003546040517fcc1a28de00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8781166004830152602482018690525f92169063cc1a28de90604401602060405180830381865afa158015610d3f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d63919061143a565b60075490915015610e4157600754817f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ddb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dff919061143a565b610e099190611491565b1115610e41576040517feea5edea00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600254610e6a9073ffffffffffffffffffffffffffffffffffffffff88811691339116876112d9565b6040517f40c10f1900000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8681166004830152602482018390527f000000000000000000000000000000000000000000000000000000000000000016906340c10f19906044015f604051808303815f87803b158015610ef7575f5ffd5b505af1158015610f09573d5f5f3e3d5ffd5b50506040805173ffffffffffffffffffffffffffffffffffffffff808b16825289166020820152908101879052606081018490526080810185905260a081018690527faaf520fdefd68e4f7ba25ba588bd6feb9e9678aa4abd1e51c34dcd7f71833d51925060c001905060405180910390a1505050505050565b610fb0335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b611016576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b5f80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6110b2335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b611118576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b73ffffffffffffffffffffffffffffffffffffffff82165f8181526004602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168515159081179091558251938452908301527f24602d694e00dc845971bbb8dc5eb9482c9bbe8bae1736a46fe7e5cdd29c6b32910160405180910390a15050565b6001545f9073ffffffffffffffffffffffffffffffffffffffff16801580159061128657506040517fb700961300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85811660048301523060248301527fffffffff000000000000000000000000000000000000000000000000000000008516604483015282169063b700961390606401602060405180830381865afa158015611262573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611286919061141f565b806112aa57505f5473ffffffffffffffffffffffffffffffffffffffff8581169116145b9150505b92915050565b828202831584820484141782026112d25763ad251c275f526004601cfd5b0492915050565b60405181606052826040528360601b602c526f23b872dd000000000000000000000000600c5260205f6064601c5f895af18060015f51141661132d57803d873b15171061132d57637939f4245f526004601cfd5b505f60605260405250505050565b73ffffffffffffffffffffffffffffffffffffffff8116811461135c575f5ffd5b50565b5f6020828403121561136f575f5ffd5b813561137a8161133b565b9392505050565b5f60208284031215611391575f5ffd5b5035919050565b5f5f5f5f608085870312156113ab575f5ffd5b84356113b68161133b565b935060208501356113c68161133b565b93969395505050506040820135916060013590565b801515811461135c575f5ffd5b5f5f604083850312156113f9575f5ffd5b82356114048161133b565b91506020830135611414816113db565b809150509250929050565b5f6020828403121561142f575f5ffd5b815161137a816113db565b5f6020828403121561144a575f5ffd5b5051919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156112ae576112ae611451565b808201808211156112ae576112ae61145156fea164736f6c634300081d000a000000000000000000000000002bd75c185f335b002b150f8aa4a84d34f9bab2000000000000000000000000fd1fd829e4e89cae8190596698e84754c3fec16c0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb0000000000000000000000003636a26ec1d512c5ecff42f7adaa5ce7964c6579

Deployed Bytecode

0x608060405234801561000f575f5ffd5b506004361061016e575f3560e01c80638da5cb5b116100d2578063c98444f711610088578063f2fde38b11610063578063f2fde38b14610351578063fb19674414610364578063fc8c085114610377575f5ffd5b8063c98444f71461032c578063dbd5edc71461033f578063ec342ad014610348575f5ffd5b8063b187bd26116100b8578063b187bd26146102b5578063b89e45b3146102ea578063bf7e214f1461030c575f5ffd5b80638da5cb5b14610276578063a6138ed914610295575f5ffd5b806367a5279311610127578063781faf641161010d578063781faf64146102305780637a9e5e4b146102505780638665120314610263575f5ffd5b806367a52793146101c8578063703bafd5146101e4575f5ffd5b80632b5d5e76116101575780632b5d5e761461019a57806336566f06146101ad578063490ae210146101b5575f5ffd5b8063169aa7a1146101725780632939037014610187575b5f5ffd5b61018561018036600461135f565b610397565b005b61018561019536600461135f565b6104a9565b6101856101a836600461135f565b6105af565b6101856106b5565b6101856101c3366004611381565b6107da565b6101d160055481565b6040519081526020015b60405180910390f35b61020b7f0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb81565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101db565b60065461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b61018561025e36600461135f565b6108a2565b610185610271366004611381565b6109f9565b5f5461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b60035461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b6003546102da9074010000000000000000000000000000000000000000900460ff1681565b60405190151581526020016101db565b6102da6102f836600461135f565b60046020525f908152604090205460ff1681565b60015461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b61018561033a366004611398565b610b87565b6101d160075481565b6101d161271081565b61018561035f36600461135f565b610f83565b6101856103723660046113e8565b611085565b60025461020b9073ffffffffffffffffffffffffffffffffffffffff1681565b6103c4335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61042f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a4544000000000000000000000000000000000000000060448201526064015b60405180910390fd5b600680547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f03e6c71d53bf39da326d7719c08317fb6795eac73a21294f40d4f0ba018676d2906020015b60405180910390a150565b6104d6335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61053c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f4a579f38821049fee42080c3d82d1034d90dd69fd37058c01927bbf274e45cc09060200161049e565b6105dc335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610642576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b600280547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040519081527f0a09ed5750cec23e3b4401aa37887445567dec654641ada89a1acfe1425c31ff9060200161049e565b6106e2335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610748576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b6003805460ff7401000000000000000000000000000000000000000080830482161581027fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90931692909217928390556040517f9077d36bc00859b5c3f320310707208543dd35092cb0a0fe117d0c6a558b148b936107d09390049091161515815260200190565b60405180910390a1565b610807335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b61086d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b60058190556040518181527f12865465a7036a0232cbf9fb63ce880a3ee54f702775fe7abbc3c416e7968cd59060200161049e565b5f5473ffffffffffffffffffffffffffffffffffffffff1633148061098157506001546040517fb70096130000000000000000000000000000000000000000000000000000000081523360048201523060248201525f357fffffffff0000000000000000000000000000000000000000000000000000000016604482015273ffffffffffffffffffffffffffffffffffffffff9091169063b700961390606401602060405180830381865afa15801561095d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610981919061141f565b610989575f5ffd5b600180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff831690811790915560405133907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a350565b610a26335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b610a8c576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b7f0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb73ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af5573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b19919061143a565b811015610b52576040517f4a60b34800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60078190556040518181527f50e5341d7a4ad030a1a03c7b2bccfa67438c0bdf5c398a3b1d7a64babfbf97fe9060200161049e565b60035474010000000000000000000000000000000000000000900460ff1615610bdc576040517fc100b5ef00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff84165f9081526004602052604090205460ff16610c52576040517f57ef27fa00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602401610426565b5f5f600554118015610c7b575060065473ffffffffffffffffffffffffffffffffffffffff1615155b15610cca57600554610c919084906127106112b4565b600654909150610cbd9073ffffffffffffffffffffffffffffffffffffffff87811691339116846112d9565b610cc7818461147e565b92505b6003546040517fcc1a28de00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8781166004830152602482018690525f92169063cc1a28de90604401602060405180830381865afa158015610d3f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d63919061143a565b60075490915015610e4157600754817f0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb73ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ddb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dff919061143a565b610e099190611491565b1115610e41576040517feea5edea00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600254610e6a9073ffffffffffffffffffffffffffffffffffffffff88811691339116876112d9565b6040517f40c10f1900000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8681166004830152602482018390527f0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb16906340c10f19906044015f604051808303815f87803b158015610ef7575f5ffd5b505af1158015610f09573d5f5f3e3d5ffd5b50506040805173ffffffffffffffffffffffffffffffffffffffff808b16825289166020820152908101879052606081018490526080810185905260a081018690527faaf520fdefd68e4f7ba25ba588bd6feb9e9678aa4abd1e51c34dcd7f71833d51925060c001905060405180910390a1505050505050565b610fb0335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b611016576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b5f80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6110b2335f357fffffffff00000000000000000000000000000000000000000000000000000000166111a5565b611118576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f554e415554484f52495a454400000000000000000000000000000000000000006044820152606401610426565b73ffffffffffffffffffffffffffffffffffffffff82165f8181526004602090815260409182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168515159081179091558251938452908301527f24602d694e00dc845971bbb8dc5eb9482c9bbe8bae1736a46fe7e5cdd29c6b32910160405180910390a15050565b6001545f9073ffffffffffffffffffffffffffffffffffffffff16801580159061128657506040517fb700961300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85811660048301523060248301527fffffffff000000000000000000000000000000000000000000000000000000008516604483015282169063b700961390606401602060405180830381865afa158015611262573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611286919061141f565b806112aa57505f5473ffffffffffffffffffffffffffffffffffffffff8581169116145b9150505b92915050565b828202831584820484141782026112d25763ad251c275f526004601cfd5b0492915050565b60405181606052826040528360601b602c526f23b872dd000000000000000000000000600c5260205f6064601c5f895af18060015f51141661132d57803d873b15171061132d57637939f4245f526004601cfd5b505f60605260405250505050565b73ffffffffffffffffffffffffffffffffffffffff8116811461135c575f5ffd5b50565b5f6020828403121561136f575f5ffd5b813561137a8161133b565b9392505050565b5f60208284031215611391575f5ffd5b5035919050565b5f5f5f5f608085870312156113ab575f5ffd5b84356113b68161133b565b935060208501356113c68161133b565b93969395505050506040820135916060013590565b801515811461135c575f5ffd5b5f5f604083850312156113f9575f5ffd5b82356114048161133b565b91506020830135611414816113db565b809150509250929050565b5f6020828403121561142f575f5ffd5b815161137a816113db565b5f6020828403121561144a575f5ffd5b5051919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b818103818111156112ae576112ae611451565b808201808211156112ae576112ae61145156fea164736f6c634300081d000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000002bd75c185f335b002b150f8aa4a84d34f9bab2000000000000000000000000fd1fd829e4e89cae8190596698e84754c3fec16c0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb0000000000000000000000003636a26ec1d512c5ecff42f7adaa5ce7964c6579

-----Decoded View---------------
Arg [0] : _owner (address): 0x002bD75C185F335b002b150F8aa4A84D34f9bAB2
Arg [1] : _depositReceiver (address): 0xfD1FD829e4E89CAE8190596698E84754C3FEc16c
Arg [2] : _shareToken (address): 0x5e105266db42f78FA814322Bce7f388B4C2e61eb
Arg [3] : _pricer (address): 0x3636a26ec1d512c5eCff42F7Adaa5cE7964C6579

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 000000000000000000000000002bd75c185f335b002b150f8aa4a84d34f9bab2
Arg [1] : 000000000000000000000000fd1fd829e4e89cae8190596698e84754c3fec16c
Arg [2] : 0000000000000000000000005e105266db42f78fa814322bce7f388b4c2e61eb
Arg [3] : 0000000000000000000000003636a26ec1d512c5ecff42f7adaa5ce7964c6579


Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.