HYPE Price: $22.25 (+0.50%)
 

Overview

HYPE Balance

HyperEVM LogoHyperEVM LogoHyperEVM Logo0 HYPE

HYPE Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Enlist Fleet Com...246291102026-01-15 12:12:0011 days ago1768479120IN
0x5CD5D7e3...729e09E3F
0 HYPE0.000008020.1020657
Enlist Fleet Com...246263652026-01-15 11:27:0011 days ago1768476420IN
0x5CD5D7e3...729e09E3F
0 HYPE0.000011250.117527

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
HarborCommand

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 50 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IHarborCommandEvents} from "../events/IHarborCommandEvents.sol";
import {IHarborCommand} from "../interfaces/IHarborCommand.sol";

import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {ProtocolAccessManaged} from "@summerfi/access-contracts/contracts/ProtocolAccessManaged.sol";

/**
 * @title HarborCommand - Fleet Commander Management System
 * @dev This contract serves as a central registry for managing official Fleet Commanders in the system.
 *
 * The HarborCommand contract is responsible for:
 * 1. Maintaining a list of authorized Fleet Commanders.
 * 2. Providing functions to enlist new Fleet Commanders and decommission existing ones.
 * 3. Offering a way to verify the active status of Fleet Commanders.
 * 4. Ensuring that only authorized entities (Governors) can modify the Fleet Commander roster.
 *
 * Key features:
 * - Enlistment and decommissioning of Fleet Commanders with proper access control.
 * - Prevention of duplicate enlistments and erroneous decommissions.
 * - Efficient storage and retrieval of active Fleet Commanders.
 * - Event emission for transparent tracking of roster changes.
 *
 * This contract plays a crucial role in maintaining the integrity and security of the fleet management system
 * by providing a reliable source of truth for official fleet verification.
 * @custom:see IHarborCommand
 */
contract HarborCommand is
    ProtocolAccessManaged,
    IHarborCommandEvents,
    IHarborCommand
{
    using EnumerableSet for EnumerableSet.AddressSet;

    /*//////////////////////////////////////////////////////////////
                            STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    /// @notice Set of active Fleet Commander addresses
    EnumerableSet.AddressSet private _activeFleetCommanders;

    /*//////////////////////////////////////////////////////////////
                                CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Initializes the HarborCommand contract
     * @param _accessManager Address of the access manager contract
     */
    constructor(address _accessManager) ProtocolAccessManaged(_accessManager) {}

    /*//////////////////////////////////////////////////////////////
                        EXTERNAL GOVERNOR FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc IHarborCommand
    function enlistFleetCommander(
        address _fleetCommander
    ) external onlyGovernor {
        if (!_activeFleetCommanders.add(_fleetCommander)) {
            revert FleetCommanderAlreadyEnlisted(_fleetCommander);
        }
        emit FleetCommanderEnlisted(_fleetCommander);
    }

    /// @inheritdoc IHarborCommand
    function decommissionFleetCommander(
        address _fleetCommander
    ) external onlyGovernor {
        if (!_activeFleetCommanders.remove(_fleetCommander)) {
            revert FleetCommanderNotEnlisted(_fleetCommander);
        }
        emit FleetCommanderDecommissioned(_fleetCommander);
    }

    /*//////////////////////////////////////////////////////////////
                            VIEW FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc IHarborCommand
    function getActiveFleetCommanders()
        external
        view
        override
        returns (address[] memory)
    {
        return _activeFleetCommanders.values();
    }

    /// @inheritdoc IHarborCommand
    function activeFleetCommanders(
        address _fleetCommander
    ) external view returns (bool) {
        return _activeFleetCommanders.contains(_fleetCommander);
    }

    /// @inheritdoc IHarborCommand
    function fleetCommandersList(
        uint256 index
    ) external view returns (address) {
        return _activeFleetCommanders.at(index);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 4 of 22 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytesSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getStringSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(string[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 9 of 22 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 10 of 22 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 14 of 22 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 * - Set can be cleared (all elements removed) in O(n).
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * The following types are supported:
 *
 * - `bytes32` (`Bytes32Set`) since v3.3.0
 * - `address` (`AddressSet`) since v3.3.0
 * - `uint256` (`UintSet`) since v3.3.0
 * - `string` (`StringSet`) since v5.4.0
 * - `bytes` (`BytesSet`) since v5.4.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
     * using it may render the function uncallable if the set grows to the point where clearing it consumes too much
     * gas to fit in a block.
     */
    function _clear(Set storage set) private {
        uint256 len = _length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
        unchecked {
            end = Math.min(end, _length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes32[] memory result = new bytes32[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(Bytes32Set storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(AddressSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(UintSet storage set) internal {
        _clear(set._inner);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner, start, end);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    struct StringSet {
        // Storage of set values
        string[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(string value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(StringSet storage set, string memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(StringSet storage set, string memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                string memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(StringSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(StringSet storage set, string memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(StringSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(StringSet storage set, uint256 index) internal view returns (string memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set) internal view returns (string[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            string[] memory result = new string[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }

    struct BytesSet {
        // Storage of set values
        bytes[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(BytesSet storage set, bytes memory value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes memory lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes all the values from a set. O(n).
     *
     * WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
     * function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
     */
    function clear(BytesSet storage set) internal {
        uint256 len = length(set);
        for (uint256 i = 0; i < len; ++i) {
            delete set._positions[set._values[i]];
        }
        Arrays.unsafeSetLength(set._values, 0);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(BytesSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set) internal view returns (bytes[] memory) {
        return set._values;
    }

    /**
     * @dev Return a slice of the set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
        unchecked {
            end = Math.min(end, length(set));
            start = Math.min(start, end);

            uint256 len = end - start;
            bytes[] memory result = new bytes[](len);
            for (uint256 i = 0; i < len; ++i) {
                result[i] = Arrays.unsafeAccess(set._values, start + i).value;
            }
            return result;
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IAccessControlErrors} from "../interfaces/IAccessControlErrors.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";

/**
 * @title LimitedAccessControl
 * @dev This contract extends OpenZeppelin's AccessControl, disabling direct role granting and revoking.
 * It's designed to be used as a base contract for more specific access control implementations.
 * @dev This contract overrides the grantRole and revokeRole functions from AccessControl to disable direct role
 * granting and revoking.
 * @dev It doesn't override the renounceRole function, so it can be used to renounce roles for compromised accounts.
 */
abstract contract LimitedAccessControl is AccessControl, IAccessControlErrors {
    /**
     * @dev Overrides the grantRole function from AccessControl to disable direct role granting.
     * @notice This function always reverts with a DirectGrantIsDisabled error.
     */
    function grantRole(bytes32, address) public view override {
        revert DirectGrantIsDisabled(msg.sender);
    }

    /**
     * @dev Overrides the revokeRole function from AccessControl to disable direct role revoking.
     * @notice This function always reverts with a DirectRevokeIsDisabled error.
     */
    function revokeRole(bytes32, address) public view override {
        revert DirectRevokeIsDisabled(msg.sender);
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IAccessControlErrors} from "../interfaces/IAccessControlErrors.sol";
import {ContractSpecificRoles, IProtocolAccessManager} from "../interfaces/IProtocolAccessManager.sol";
import {ProtocolAccessManager} from "./ProtocolAccessManager.sol";

import {Context} from "@openzeppelin/contracts/utils/Context.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";

/**
 * @title ProtocolAccessManaged
 * @notice This contract provides role-based access control functionality for protocol contracts
 * by interfacing with a central ProtocolAccessManager.
 *
 * @dev This contract is meant to be inherited by other protocol contracts that need
 * role-based access control. It provides modifiers and utilities to check various roles.
 *
 * The contract supports several key roles through modifiers:
 * 1. GOVERNOR_ROLE: System-wide administrators
 * 2. KEEPER_ROLE: Routine maintenance operators (contract-specific)
 * 3. SUPER_KEEPER_ROLE: Advanced maintenance operators (global)
 * 4. CURATOR_ROLE: Fleet-specific managers
 * 5. GUARDIAN_ROLE: Emergency response operators
 * 6. DECAY_CONTROLLER_ROLE: Specific role for decay management
 * 7. ADMIRALS_QUARTERS_ROLE: Specific role for admirals quarters bundler contract
 *
 * Usage:
 * - Inherit from this contract to gain access to role-checking modifiers
 * - Use modifiers like onlyGovernor, onlyKeeper, etc. to protect functions
 * - Access the internal _accessManager to perform custom role checks
 *
 * Security Considerations:
 * - The contract validates the access manager address during construction
 * - All role checks are performed against the immutable access manager instance
 * - Contract-specific roles are generated using the contract's address to prevent conflicts
 */
contract ProtocolAccessManaged is IAccessControlErrors, Context {
    /*//////////////////////////////////////////////////////////////
                                CONSTANTS
    //////////////////////////////////////////////////////////////*/

    /// @notice Role identifier for protocol governors - highest privilege level with admin capabilities
    bytes32 public constant GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE");

    /// @notice Role identifier for super keepers who can globally perform fleet maintanence roles
    bytes32 public constant SUPER_KEEPER_ROLE = keccak256("SUPER_KEEPER_ROLE");

    /**
     * @notice Role identifier for protocol guardians
     * @dev Guardians have emergency powers across multiple protocol components:
     * - Can pause/unpause Fleet operations for security
     * - Can pause/unpause TipJar operations
     * - Can cancel governance proposals on SummerGovernor even if they don't meet normal cancellation requirements
     * - Can cancel TipJar proposals
     *
     * The guardian role serves as an emergency backstop to protect the protocol, but with less
     * privilege than governors.
     */
    bytes32 public constant GUARDIAN_ROLE = keccak256("GUARDIAN_ROLE");

    /**
     * @notice Role identifier for decay controller
     * @dev This role allows the decay controller to manage the decay of user voting power
     */
    bytes32 public constant DECAY_CONTROLLER_ROLE =
        keccak256("DECAY_CONTROLLER_ROLE");

    /**
     * @notice Role identifier for admirals quarters bundler contract
     * @dev This role allows Admirals Quarters to unstake and withdraw assets from fleets, on behalf of users
     * @dev Withdrawn tokens go straight to users wallet, lowering the risk of manipulation if the role is compromised
     */
    bytes32 public constant ADMIRALS_QUARTERS_ROLE =
        keccak256("ADMIRALS_QUARTERS_ROLE");

    /*//////////////////////////////////////////////////////////////
                            STATE VARIABLES
    //////////////////////////////////////////////////////////////*/

    /// @notice The ProtocolAccessManager instance used for access control
    ProtocolAccessManager internal immutable _accessManager;

    /*//////////////////////////////////////////////////////////////
                                CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Initializes the ProtocolAccessManaged contract
     * @param accessManager Address of the ProtocolAccessManager contract
     * @dev Validates the provided accessManager address and initializes the _accessManager
     */
    constructor(address accessManager) {
        if (accessManager == address(0)) {
            revert InvalidAccessManagerAddress(address(0));
        }

        if (
            !IERC165(accessManager).supportsInterface(
                type(IProtocolAccessManager).interfaceId
            )
        ) {
            revert InvalidAccessManagerAddress(accessManager);
        }

        _accessManager = ProtocolAccessManager(accessManager);
    }

    /*//////////////////////////////////////////////////////////////
                                MODIFIERS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Modifier to restrict access to governors only
     *
     * @dev Modifier to check that the caller has the Governor role
     * @custom:internal-logic
     * - Checks if the caller has the GOVERNOR_ROLE in the access manager
     * @custom:effects
     * - Reverts if the caller doesn't have the GOVERNOR_ROLE
     * - Allows the function to proceed if the caller has the role
     * @custom:security-considerations
     * - Ensures that only authorized governors can access critical functions
     * - Relies on the correct setup of the access manager
     */
    modifier onlyGovernor() {
        if (!_accessManager.hasRole(GOVERNOR_ROLE, msg.sender)) {
            revert CallerIsNotGovernor(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to keepers only
     * @dev Modifier to check that the caller has the Keeper role
     * @custom:internal-logic
     * - Checks if the caller has either the contract-specific KEEPER_ROLE or the SUPER_KEEPER_ROLE
     * @custom:effects
     * - Reverts if the caller doesn't have either of the required roles
     * - Allows the function to proceed if the caller has one of the roles
     * @custom:security-considerations
     * - Ensures that only authorized keepers can access maintenance functions
     * - Allows for both contract-specific and super keepers
     * @custom:gas-considerations
     * - Performs two role checks, which may impact gas usage
     */
    modifier onlyKeeper() {
        if (
            !_accessManager.hasRole(
                generateRole(ContractSpecificRoles.KEEPER_ROLE, address(this)),
                msg.sender
            ) && !_accessManager.hasRole(SUPER_KEEPER_ROLE, msg.sender)
        ) {
            revert CallerIsNotKeeper(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to super keepers only
     * @dev Modifier to check that the caller has the Super Keeper role
     * @custom:internal-logic
     * - Checks if the caller has the SUPER_KEEPER_ROLE in the access manager
     * @custom:effects
     * - Reverts if the caller doesn't have the SUPER_KEEPER_ROLE
     * - Allows the function to proceed if the caller has the role
     * @custom:security-considerations
     * - Ensures that only authorized super keepers can access advanced maintenance functions
     * - Relies on the correct setup of the access manager
     */
    modifier onlySuperKeeper() {
        if (!_accessManager.hasRole(SUPER_KEEPER_ROLE, msg.sender)) {
            revert CallerIsNotSuperKeeper(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to curators only
     * @param fleetAddress The address of the fleet to check the curator role for
     * @dev Checks if the caller has the contract-specific CURATOR_ROLE
     */
    modifier onlyCurator(address fleetAddress) {
        if (
            fleetAddress == address(0) ||
            !_accessManager.hasRole(
                generateRole(ContractSpecificRoles.CURATOR_ROLE, fleetAddress),
                msg.sender
            )
        ) {
            revert CallerIsNotCurator(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to guardians only
     * @dev Modifier to check that the caller has the Guardian role
     * @custom:internal-logic
     * - Checks if the caller has the GUARDIAN_ROLE in the access manager
     * @custom:effects
     * - Reverts if the caller doesn't have the GUARDIAN_ROLE
     * - Allows the function to proceed if the caller has the role
     * @custom:security-considerations
     * - Ensures that only authorized guardians can access emergency functions
     * - Relies on the correct setup of the access manager
     */
    modifier onlyGuardian() {
        if (!_accessManager.hasRole(GUARDIAN_ROLE, msg.sender)) {
            revert CallerIsNotGuardian(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to either guardians or governors
     * @dev Modifier to check that the caller has either the Guardian or Governor role
     * @custom:internal-logic
     * - Checks if the caller has either the GUARDIAN_ROLE or the GOVERNOR_ROLE
     * @custom:effects
     * - Reverts if the caller doesn't have either of the required roles
     * - Allows the function to proceed if the caller has one of the roles
     * @custom:security-considerations
     * - Ensures that only authorized guardians or governors can access certain functions
     * - Provides flexibility for functions that can be accessed by either role
     * @custom:gas-considerations
     * - Performs two role checks, which may impact gas usage
     */
    modifier onlyGuardianOrGovernor() {
        if (
            !_accessManager.hasRole(GUARDIAN_ROLE, msg.sender) &&
            !_accessManager.hasRole(GOVERNOR_ROLE, msg.sender)
        ) {
            revert CallerIsNotGuardianOrGovernor(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to decay controllers only
     */
    modifier onlyDecayController() {
        if (!_accessManager.hasRole(DECAY_CONTROLLER_ROLE, msg.sender)) {
            revert CallerIsNotDecayController(msg.sender);
        }
        _;
    }

    /**
     * @notice Modifier to restrict access to foundation only
     * @dev Modifier to check that the caller has the Foundation role
     * @custom:security-considerations
     * - Ensures that only the Foundation can access vesting and related functions
     * - Relies on the correct setup of the access manager
     */
    modifier onlyFoundation() {
        if (
            !_accessManager.hasRole(
                _accessManager.FOUNDATION_ROLE(),
                msg.sender
            )
        ) {
            revert CallerIsNotFoundation(msg.sender);
        }
        _;
    }

    /*//////////////////////////////////////////////////////////////
                            PUBLIC FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Generates a role identifier for a specific contract and role
     * @param roleName The name of the role
     * @param roleTargetContract The address of the contract the role is for
     * @return The generated role identifier
     * @dev This function is used to create unique role identifiers for contract-specific roles
     */
    function generateRole(
        ContractSpecificRoles roleName,
        address roleTargetContract
    ) public pure returns (bytes32) {
        return keccak256(abi.encodePacked(roleName, roleTargetContract));
    }

    /**
     * @notice Checks if an account has the Admirals Quarters role
     * @param account The address to check
     * @return bool True if the account has the Admirals Quarters role
     */
    function hasAdmiralsQuartersRole(
        address account
    ) public view returns (bool) {
        return _accessManager.hasRole(ADMIRALS_QUARTERS_ROLE, account);
    }

    /*//////////////////////////////////////////////////////////////
                            INTERNAL FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Helper function to check if an address has the Governor role
     * @param account The address to check
     * @return bool True if the address has the Governor role
     */
    function _isGovernor(address account) internal view returns (bool) {
        return _accessManager.hasRole(GOVERNOR_ROLE, account);
    }

    function _isDecayController(address account) internal view returns (bool) {
        return _accessManager.hasRole(DECAY_CONTROLLER_ROLE, account);
    }

    /**
     * @notice Helper function to check if an address has the Foundation role
     * @param account The address to check
     * @return bool True if the address has the Foundation role
     */
    function _isFoundation(address account) internal view returns (bool) {
        return
            _accessManager.hasRole(_accessManager.FOUNDATION_ROLE(), account);
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {ContractSpecificRoles, IProtocolAccessManager} from "../interfaces/IProtocolAccessManager.sol";
import {LimitedAccessControl} from "./LimitedAccessControl.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";

/**
 * @title ProtocolAccessManager
 * @notice This contract is the central authority for access control within the protocol.
 * It defines and manages various roles that govern different aspects of the system.
 *
 * @dev This contract extends LimitedAccessControl, which restricts direct role management.
 * Roles are typically assigned during deployment or through governance proposals.
 *
 * The contract defines four main roles:
 * 1. GOVERNOR_ROLE: System-wide administrators
 * 2. KEEPER_ROLE: Routine maintenance operators
 * 3. SUPER_KEEPER_ROLE: Advanced maintenance operators
 * 4. COMMANDER_ROLE: Managers of specific protocol components (Arks)
 * 5. ADMIRALS_QUARTERS_ROLE: Specific role for admirals quarters bundler contract
 * Role Hierarchy and Management:
 * - The GOVERNOR_ROLE is at the top of the hierarchy and can manage all other roles.
 * - Other roles cannot manage roles directly due to LimitedAccessControl restrictions.
 * - Role assignments are typically done through governance proposals or during initial setup.
 *
 * Usage in the System:
 * - Other contracts in the system inherit from ProtocolAccessManaged, which checks permissions
 *   against this ProtocolAccessManager.
 * - Critical functions in various contracts are protected by role-based modifiers
 *   (e.g., onlyGovernor, onlyKeeper, etc.) which query this contract for permissions.
 *
 * Security Considerations:
 * - The GOVERNOR_ROLE has significant power and should be managed carefully, potentially
 *   through a multi-sig wallet or governance contract.
 * - The SUPER_KEEPER_ROLE has elevated privileges and should be assigned judiciously.
 * - The COMMANDER_ROLE is not directly manageable through this contract but is used
 *   in other parts of the system for specific access control.
 */
contract ProtocolAccessManager is IProtocolAccessManager, LimitedAccessControl {
    /*//////////////////////////////////////////////////////////////
                                CONSTANTS
    //////////////////////////////////////////////////////////////*/

    /// @notice Role identifier for protocol governors - highest privilege level with admin capabilities
    bytes32 public constant GOVERNOR_ROLE = keccak256("GOVERNOR_ROLE");

    /// @notice Role identifier for super keepers who can globally perform fleet maintanence roles
    bytes32 public constant SUPER_KEEPER_ROLE = keccak256("SUPER_KEEPER_ROLE");

    /**
     * @notice Role identifier for protocol guardians
     * @dev Guardians have emergency powers across multiple protocol components:
     * - Can pause/unpause Fleet operations for security
     * - Can pause/unpause TipJar operations
     * - Can cancel governance proposals on SummerGovernor even if they don't meet normal cancellation requirements
     * - Can cancel TipJar proposals
     *
     * The guardian role serves as an emergency backstop to protect the protocol, but with less
     * privilege than governors.
     */
    bytes32 public constant GUARDIAN_ROLE = keccak256("GUARDIAN_ROLE");

    /**
     * @notice Role identifier for decay controller
     * @dev This role allows the decay controller to manage the decay of user voting power
     */
    bytes32 public constant DECAY_CONTROLLER_ROLE =
        keccak256("DECAY_CONTROLLER_ROLE");

    /**
     * @notice Role identifier for admirals quarters bundler contract
     * @dev This role allows Admirals Quarters to unstake and withdraw assets from fleets, on behalf of users
     * @dev Withdrawn tokens go straight to users wallet, lowering the risk of manipulation if the role is compromised
     */
    bytes32 public constant ADMIRALS_QUARTERS_ROLE =
        keccak256("ADMIRALS_QUARTERS_ROLE");

    /// @notice Minimum allowed guardian expiration period (7 days)
    uint256 public constant MIN_GUARDIAN_EXPIRY = 7 days;

    /// @notice Maximum allowed guardian expiration period (180 days)
    uint256 public constant MAX_GUARDIAN_EXPIRY = 180 days;

    /// @notice Role identifier for the Foundation which manages vesting wallets and related operations
    bytes32 public constant FOUNDATION_ROLE = keccak256("FOUNDATION_ROLE");

    /*//////////////////////////////////////////////////////////////
                                CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Initializes the ProtocolAccessManager contract
     * @param governor Address of the initial governor
     * @dev Grants the governor address the GOVERNOR_ROLE
     */
    constructor(address governor) {
        _grantRole(GOVERNOR_ROLE, governor);
    }

    /**
     * @dev Modifier to check that the caller has the Governor role
     */
    modifier onlyGovernor() {
        if (!hasRole(GOVERNOR_ROLE, msg.sender)) {
            revert CallerIsNotGovernor(msg.sender);
        }
        _;
    }

    /*//////////////////////////////////////////////////////////////
                            PUBLIC FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Checks if the contract supports a given interface
     * @dev Overrides the supportsInterface function from AccessControl
     * @param interfaceId The interface identifier, as specified in ERC-165
     * @return bool True if the contract supports the interface, false otherwise
     *
     * This function supports:
     * - IProtocolAccessManager interface
     * - All interfaces supported by the parent AccessControl contract
     */
    function supportsInterface(
        bytes4 interfaceId
    ) public view override returns (bool) {
        return
            interfaceId == type(IProtocolAccessManager).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /// @inheritdoc IProtocolAccessManager
    function grantGovernorRole(address account) external onlyGovernor {
        _grantRole(GOVERNOR_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeGovernorRole(address account) external onlyGovernor {
        _revokeRole(GOVERNOR_ROLE, account);
    }

    /*//////////////////////////////////////////////////////////////
                        EXTERNAL GOVERNOR FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc IProtocolAccessManager
    function grantSuperKeeperRole(address account) external onlyGovernor {
        _grantRole(SUPER_KEEPER_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function grantGuardianRole(address account) external onlyGovernor {
        _grantRole(GUARDIAN_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeGuardianRole(address account) external onlyGovernor {
        _revokeRole(GUARDIAN_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeSuperKeeperRole(address account) external onlyGovernor {
        _revokeRole(SUPER_KEEPER_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function grantContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract,
        address roleOwner
    ) public onlyGovernor {
        bytes32 role = generateRole(roleName, roleTargetContract);
        _grantRole(role, roleOwner);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract,
        address roleOwner
    ) public onlyGovernor {
        bytes32 role = generateRole(roleName, roleTargetContract);
        _revokeRole(role, roleOwner);
    }

    /// @inheritdoc IProtocolAccessManager
    function grantCuratorRole(
        address fleetCommanderAddress,
        address account
    ) public onlyGovernor {
        grantContractSpecificRole(
            ContractSpecificRoles.CURATOR_ROLE,
            fleetCommanderAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeCuratorRole(
        address fleetCommanderAddress,
        address account
    ) public onlyGovernor {
        revokeContractSpecificRole(
            ContractSpecificRoles.CURATOR_ROLE,
            fleetCommanderAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function grantKeeperRole(
        address fleetCommanderAddress,
        address account
    ) public onlyGovernor {
        grantContractSpecificRole(
            ContractSpecificRoles.KEEPER_ROLE,
            fleetCommanderAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeKeeperRole(
        address fleetCommanderAddress,
        address account
    ) public onlyGovernor {
        revokeContractSpecificRole(
            ContractSpecificRoles.KEEPER_ROLE,
            fleetCommanderAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function grantCommanderRole(
        address arkAddress,
        address account
    ) public onlyGovernor {
        grantContractSpecificRole(
            ContractSpecificRoles.COMMANDER_ROLE,
            arkAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeCommanderRole(
        address arkAddress,
        address account
    ) public onlyGovernor {
        revokeContractSpecificRole(
            ContractSpecificRoles.COMMANDER_ROLE,
            arkAddress,
            account
        );
    }

    /// @inheritdoc IProtocolAccessManager
    function grantDecayControllerRole(address account) public onlyGovernor {
        _grantRole(DECAY_CONTROLLER_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeDecayControllerRole(address account) public onlyGovernor {
        _revokeRole(DECAY_CONTROLLER_ROLE, account);
    }

    /*//////////////////////////////////////////////////////////////
                            PUBLIC FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc IProtocolAccessManager
    function selfRevokeContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract
    ) public {
        bytes32 role = generateRole(roleName, roleTargetContract);
        if (!hasRole(role, msg.sender)) {
            revert CallerIsNotContractSpecificRole(msg.sender, role);
        }
        _revokeRole(role, msg.sender);
    }

    /// @inheritdoc IProtocolAccessManager
    function generateRole(
        ContractSpecificRoles roleName,
        address roleTargetContract
    ) public pure returns (bytes32) {
        return keccak256(abi.encodePacked(roleName, roleTargetContract));
    }

    /// @inheritdoc IProtocolAccessManager
    function grantAdmiralsQuartersRole(
        address account
    ) external onlyRole(GOVERNOR_ROLE) {
        _grantRole(ADMIRALS_QUARTERS_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeAdmiralsQuartersRole(
        address account
    ) external onlyRole(GOVERNOR_ROLE) {
        _revokeRole(ADMIRALS_QUARTERS_ROLE, account);
    }

    mapping(address guardian => uint256 expirationTimestamp)
        public guardianExpirations;

    /**
     * @notice Checks if an account is an active guardian (has role and not expired)
     * @param account Address to check
     * @return bool True if account is an active guardian
     */
    function isActiveGuardian(address account) public view returns (bool) {
        return
            hasRole(GUARDIAN_ROLE, account) &&
            guardianExpirations[account] > block.timestamp;
    }

    /**
     * @notice Sets the expiration timestamp for a guardian
     * @param account Guardian address
     * @param expiration Timestamp when guardian powers expire
     * @dev The expiration period (time from now until expiration) must be between MIN_GUARDIAN_EXPIRY and MAX_GUARDIAN_EXPIRY
     * This ensures guardians can't be immediately removed (protecting against malicious proposals) while still
     * allowing for their eventual phase-out (protecting against malicious guardians)
     */
    function setGuardianExpiration(
        address account,
        uint256 expiration
    ) external onlyRole(GOVERNOR_ROLE) {
        if (!hasRole(GUARDIAN_ROLE, account)) {
            revert CallerIsNotGuardian(account);
        }

        uint256 expiryPeriod = expiration - block.timestamp;
        if (
            expiryPeriod < MIN_GUARDIAN_EXPIRY ||
            expiryPeriod > MAX_GUARDIAN_EXPIRY
        ) {
            revert InvalidGuardianExpiryPeriod(
                expiryPeriod,
                MIN_GUARDIAN_EXPIRY,
                MAX_GUARDIAN_EXPIRY
            );
        }

        guardianExpirations[account] = expiration;
        emit GuardianExpirationSet(account, expiration);
    }

    /**
     * @inheritdoc IProtocolAccessManager
     */
    function hasRole(
        bytes32 role,
        address account
    )
        public
        view
        virtual
        override(IProtocolAccessManager, AccessControl)
        returns (bool)
    {
        return super.hasRole(role, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function getGuardianExpiration(
        address account
    ) external view returns (uint256 expiration) {
        if (!hasRole(GUARDIAN_ROLE, account)) {
            revert CallerIsNotGuardian(account);
        }
        return guardianExpirations[account];
    }

    /// @inheritdoc IProtocolAccessManager
    function grantFoundationRole(address account) external onlyGovernor {
        _grantRole(FOUNDATION_ROLE, account);
    }

    /// @inheritdoc IProtocolAccessManager
    function revokeFoundationRole(address account) external onlyGovernor {
        _revokeRole(FOUNDATION_ROLE, account);
    }
}

File 18 of 22 : IAccessControlErrors.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

/**
 * @title IAccessControlErrors
 * @dev This file contains custom error definitions for access control in the system.
 * @notice These custom errors provide more gas-efficient and informative error handling
 * compared to traditional require statements with string messages.
 */
interface IAccessControlErrors {
    /**
     * @notice Thrown when a caller does not have the required role.
     */
    error CallerIsNotContractSpecificRole(address caller, bytes32 role);

    /**
     * @notice Thrown when a caller is not the curator.
     */
    error CallerIsNotCurator(address caller);

    /**
     * @notice Thrown when a caller is not the governor.
     */
    error CallerIsNotGovernor(address caller);

    /**
     * @notice Thrown when a caller is not a keeper.
     */
    error CallerIsNotKeeper(address caller);

    /**
     * @notice Thrown when a caller is not a super keeper.
     */
    error CallerIsNotSuperKeeper(address caller);

    /**
     * @notice Thrown when a caller is not the commander.
     */
    error CallerIsNotCommander(address caller);

    /**
     * @notice Thrown when a caller is neither the Raft nor the commander.
     */
    error CallerIsNotRaftOrCommander(address caller);

    /**
     * @notice Thrown when a caller is not the Raft.
     */
    error CallerIsNotRaft(address caller);

    /**
     * @notice Thrown when a caller is not an admin.
     */
    error CallerIsNotAdmin(address caller);

    /**
     * @notice Thrown when a caller is not the guardian.
     */
    error CallerIsNotGuardian(address caller);

    /**
     * @notice Thrown when a caller is not the guardian or governor.
     */
    error CallerIsNotGuardianOrGovernor(address caller);

    /**
     * @notice Thrown when a caller is not the decay controller.
     */
    error CallerIsNotDecayController(address caller);

    /**
     * @notice Thrown when a caller is not authorized to board.
     */
    error CallerIsNotAuthorizedToBoard(address caller);

    /**
     * @notice Thrown when direct grant is disabled.
     */
    error DirectGrantIsDisabled(address caller);

    /**
     * @notice Thrown when direct revoke is disabled.
     */
    error DirectRevokeIsDisabled(address caller);

    /**
     * @notice Thrown when an invalid access manager address is provided.
     */
    error InvalidAccessManagerAddress(address invalidAddress);

    /**
     * @notice Error thrown when a caller is not the Foundation
     * @param caller The address that attempted the operation
     */
    error CallerIsNotFoundation(address caller);
}

File 19 of 22 : IProtocolAccessManager.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";

/**
 * @dev Dynamic roles are roles that are not hardcoded in the contract but are defined by the protocol
 * Members of this enum are treated as prefixes to the role generated using prefix and target contract address
 * e.g generateRole(ContractSpecificRoles.CURATOR_ROLE, address(this)) for FleetCommander, to generate the CURATOR_ROLE
 * for the curator of the FleetCommander contract
 */
enum ContractSpecificRoles {
    CURATOR_ROLE,
    KEEPER_ROLE,
    COMMANDER_ROLE
}

/**
 * @title IProtocolAccessManager
 * @notice Defines system roles and provides role based remote-access control for
 *         contracts that inherit from ProtocolAccessManaged contract
 */
interface IProtocolAccessManager {
    /**
     * @notice Grants the Governor role to a given account
     *
     * @param account The account to which the Governor role will be granted
     */
    function grantGovernorRole(address account) external;

    /**
     * @notice Revokes the Governor role from a given account
     *
     * @param account The account from which the Governor role will be revoked
     */
    function revokeGovernorRole(address account) external;

    /**
     * @notice Grants the Super Keeper role to a given account
     *
     * @param account The account to which the Super Keeper role will be granted
     */
    function grantSuperKeeperRole(address account) external;

    /**
     * @notice Revokes the Super Keeper role from a given account
     *
     * @param account The account from which the Super Keeper role will be revoked
     */
    function revokeSuperKeeperRole(address account) external;

    /**
     * @dev Generates a unique role identifier based on the role name and target contract address
     * @param roleName The name of the role (from ContractSpecificRoles enum)
     * @param roleTargetContract The address of the contract the role is for
     * @return bytes32 The generated role identifier
     * @custom:internal-logic
     * - Combines the roleName and roleTargetContract using abi.encodePacked
     * - Applies keccak256 hash function to generate a unique bytes32 identifier
     * @custom:effects
     * - Does not modify any state, pure function
     * @custom:security-considerations
     * - Ensures unique role identifiers for different contracts
     * - Relies on the uniqueness of contract addresses and role names
     */
    function generateRole(
        ContractSpecificRoles roleName,
        address roleTargetContract
    ) external pure returns (bytes32);

    /**
     * @notice Grants a contract specific role to a given account
     * @param roleName The name of the role to grant
     * @param roleTargetContract The address of the contract to grant the role for
     * @param account The account to which the role will be granted
     */
    function grantContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract,
        address account
    ) external;

    /**
     * @notice Revokes a contract specific role from a given account
     * @param roleName The name of the role to revoke
     * @param roleTargetContract The address of the contract to revoke the role for
     * @param account The account from which the role will be revoked
     */
    function revokeContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract,
        address account
    ) external;

    /**
     * @notice Grants the Curator role to a given account
     * @param fleetCommanderAddress The address of the fleet commander to grant the role for
     * @param account The account to which the role will be granted
     */
    function grantCuratorRole(
        address fleetCommanderAddress,
        address account
    ) external;

    /**
     * @notice Revokes the Curator role from a given account
     * @param fleetCommanderAddress The address of the fleet commander to revoke the role for
     * @param account The account from which the role will be revoked
     */
    function revokeCuratorRole(
        address fleetCommanderAddress,
        address account
    ) external;

    /**
     * @notice Grants the Keeper role to a given account
     * @param fleetCommanderAddress The address of the fleet commander to grant the role for
     * @param account The account to which the role will be granted
     */
    function grantKeeperRole(
        address fleetCommanderAddress,
        address account
    ) external;

    /**
     * @notice Revokes the Keeper role from a given account
     * @param fleetCommanderAddress The address of the fleet commander to revoke the role for
     * @param account The account from which the role will be revoked
     */
    function revokeKeeperRole(
        address fleetCommanderAddress,
        address account
    ) external;

    /**
     * @notice Grants the Commander role for a specific Ark
     * @param arkAddress Address of the Ark contract
     * @param account Address to grant the Commander role to
     */
    function grantCommanderRole(address arkAddress, address account) external;

    /**
     * @notice Revokes the Commander role for a specific Ark
     * @param arkAddress Address of the Ark contract
     * @param account Address to revoke the Commander role from
     */
    function revokeCommanderRole(address arkAddress, address account) external;

    /**
     * @notice Revokes a contract specific role from the caller
     * @param roleName The name of the role to revoke
     * @param roleTargetContract The address of the contract to revoke the role for
     */
    function selfRevokeContractSpecificRole(
        ContractSpecificRoles roleName,
        address roleTargetContract
    ) external;

    /**
     * @notice Grants the Guardian role to a given account
     *
     * @param account The account to which the Guardian role will be granted
     */
    function grantGuardianRole(address account) external;

    /**
     * @notice Revokes the Guardian role from a given account
     *
     * @param account The account from which the Guardian role will be revoked
     */
    function revokeGuardianRole(address account) external;

    /**
     * @notice Grants the Decay Controller role to a given account
     * @param account The account to which the Decay Controller role will be granted
     */
    function grantDecayControllerRole(address account) external;

    /**
     * @notice Revokes the Decay Controller role from a given account
     * @param account The account from which the Decay Controller role will be revoked
     */
    function revokeDecayControllerRole(address account) external;

    /**
     * @notice Grants the ADMIRALS_QUARTERS_ROLE to an address
     * @param account The address to grant the role to
     */
    function grantAdmiralsQuartersRole(address account) external;

    /**
     * @notice Revokes the ADMIRALS_QUARTERS_ROLE from an address
     * @param account The address to revoke the role from
     */
    function revokeAdmiralsQuartersRole(address account) external;

    /*//////////////////////////////////////////////////////////////
                            ROLE CONSTANTS
    //////////////////////////////////////////////////////////////*/

    /// @notice Role identifier for the Governor role
    function GOVERNOR_ROLE() external pure returns (bytes32);

    /// @notice Role identifier for the Guardian role
    function GUARDIAN_ROLE() external pure returns (bytes32);

    /// @notice Role identifier for the Super Keeper role
    function SUPER_KEEPER_ROLE() external pure returns (bytes32);

    /// @notice Role identifier for the Decay Controller role
    function DECAY_CONTROLLER_ROLE() external pure returns (bytes32);

    /// @notice Role identifier for the Admirals Quarters role
    function ADMIRALS_QUARTERS_ROLE() external pure returns (bytes32);

    /// @notice Role identifier for the Foundation, responsible for managing vesting wallets and related operations
    function FOUNDATION_ROLE() external pure returns (bytes32);

    /**
     * @notice Checks if an account has a specific role
     * @param role The role identifier to check
     * @param account The account to check the role for
     * @return bool True if the account has the role, false otherwise
     */
    function hasRole(
        bytes32 role,
        address account
    ) external view returns (bool);

    /*//////////////////////////////////////////////////////////////
                                EVENTS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Emitted when a guardian's expiration is set
     * @param account The address of the guardian
     * @param expiration The timestamp until which the guardian powers are valid
     */
    event GuardianExpirationSet(address indexed account, uint256 expiration);

    /*//////////////////////////////////////////////////////////////
                            GUARDIAN FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Checks if an account is an active guardian (has role and not expired)
     * @param account Address to check
     * @return bool True if account is an active guardian
     */
    function isActiveGuardian(address account) external view returns (bool);

    /**
     * @notice Sets the expiration timestamp for a guardian
     * @param account Guardian address
     * @param expiration Timestamp when guardian powers expire
     */
    function setGuardianExpiration(
        address account,
        uint256 expiration
    ) external;

    /**
     * @notice Gets the expiration timestamp for a guardian
     * @param account Guardian address
     * @return uint256 Timestamp when guardian powers expire
     */
    function guardianExpirations(
        address account
    ) external view returns (uint256);

    /**
     * @notice Gets the expiration timestamp for a guardian
     * @param account Guardian address
     * @return expiration Timestamp when guardian powers expire
     */
    function getGuardianExpiration(
        address account
    ) external view returns (uint256 expiration);

    /**
     * @notice Emitted when an invalid guardian expiry period is set
     * @param expiryPeriod The expiry period that was set
     * @param minExpiryPeriod The minimum allowed expiry period
     * @param maxExpiryPeriod The maximum allowed expiry period
     */
    error InvalidGuardianExpiryPeriod(
        uint256 expiryPeriod,
        uint256 minExpiryPeriod,
        uint256 maxExpiryPeriod
    );

    /**
     * @notice Grants the Foundation role to a given account. The Foundation is responsible for
     * managing vesting wallets and related operations.
     * @param account The account to which the Foundation role will be granted
     */
    function grantFoundationRole(address account) external;

    /**
     * @notice Revokes the Foundation role from a given account
     * @param account The account from which the Foundation role will be revoked
     */
    function revokeFoundationRole(address account) external;
}

File 20 of 22 : IHarborCommandErrors.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

/**
 * @title IHarborCommandErrors
 * @dev This file contains custom error definitions for the HarborCommand contract.
 * @notice These custom errors provide more gas-efficient and informative error handling
 * compared to traditional require statements with string messages.
 */
interface IHarborCommandErrors {
    /**
     * @notice Thrown when attempting to enlist a FleetCommander that is already enlisted
     * @param fleetCommander The address of the FleetCommander that was attempted to be enlisted
     */
    error FleetCommanderAlreadyEnlisted(address fleetCommander);

    /**
     * @notice Thrown when attempting to decommission a FleetCommander that is not currently enlisted
     * @param fleetCommander The address of the FleetCommander that was attempted to be decommissioned
     */
    error FleetCommanderNotEnlisted(address fleetCommander);
}

File 21 of 22 : IHarborCommandEvents.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

interface IHarborCommandEvents {
    /**
     * @notice Emitted when a new FleetCommander is enlisted
     * @param fleetCommander The address of the enlisted FleetCommander
     */
    event FleetCommanderEnlisted(address indexed fleetCommander);

    /**
     * @notice Emitted when a FleetCommander is decommissioned
     * @param fleetCommander The address of the decommissioned FleetCommander
     */
    event FleetCommanderDecommissioned(address indexed fleetCommander);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IHarborCommandErrors} from "../errors/IHarborCommandErrors.sol";

/**
 * @title IHarborCommand
 * @notice Interface for the HarborCommand contract which manages FleetCommanders and TipJar
 * @dev This interface defines the external functions and events for HarborCommand
 */
interface IHarborCommand is IHarborCommandErrors {
    /**
     * @notice Enlists a new FleetCommander
     * @dev Only callable by the governor
     * @param _fleetCommander The address of the FleetCommander to enlist
     * @custom:error FleetCommanderAlreadyEnlisted Thrown if the FleetCommander is already enlisted
     */
    function enlistFleetCommander(address _fleetCommander) external;

    /**
     * @notice Decommissions an enlisted FleetCommander
     * @dev Only callable by the governor
     * @param _fleetCommander The address of the FleetCommander to decommission
     * @custom:error FleetCommanderNotEnlisted Thrown if the FleetCommander is not enlisted
     */
    function decommissionFleetCommander(address _fleetCommander) external;

    /**
     * @notice Retrieves the list of active FleetCommanders
     * @return An array of addresses representing the active FleetCommanders
     */
    function getActiveFleetCommanders()
        external
        view
        returns (address[] memory);

    /**
     * @notice Checks if a FleetCommander is currently active
     * @param _fleetCommander The address of the FleetCommander to check
     * @return bool True if the FleetCommander is active, false otherwise
     */
    function activeFleetCommanders(
        address _fleetCommander
    ) external view returns (bool);

    /**
     * @notice Retrieves the FleetCommander at a specific index in the list
     * @param index The index in the list of FleetCommanders
     * @return The address of the FleetCommander at the specified index
     */
    function fleetCommandersList(uint256 index) external view returns (address);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 50
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_accessManager","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotAdmin","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotAuthorizedToBoard","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotCommander","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"CallerIsNotContractSpecificRole","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotCurator","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotDecayController","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotFoundation","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotGovernor","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotGuardian","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotGuardianOrGovernor","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotKeeper","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotRaft","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotRaftOrCommander","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotSuperKeeper","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"DirectGrantIsDisabled","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"DirectRevokeIsDisabled","type":"error"},{"inputs":[{"internalType":"address","name":"fleetCommander","type":"address"}],"name":"FleetCommanderAlreadyEnlisted","type":"error"},{"inputs":[{"internalType":"address","name":"fleetCommander","type":"address"}],"name":"FleetCommanderNotEnlisted","type":"error"},{"inputs":[{"internalType":"address","name":"invalidAddress","type":"address"}],"name":"InvalidAccessManagerAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"fleetCommander","type":"address"}],"name":"FleetCommanderDecommissioned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"fleetCommander","type":"address"}],"name":"FleetCommanderEnlisted","type":"event"},{"inputs":[],"name":"ADMIRALS_QUARTERS_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DECAY_CONTROLLER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GOVERNOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GUARDIAN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SUPER_KEEPER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_fleetCommander","type":"address"}],"name":"activeFleetCommanders","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_fleetCommander","type":"address"}],"name":"decommissionFleetCommander","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_fleetCommander","type":"address"}],"name":"enlistFleetCommander","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"fleetCommandersList","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum ContractSpecificRoles","name":"roleName","type":"uint8"},{"internalType":"address","name":"roleTargetContract","type":"address"}],"name":"generateRole","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getActiveFleetCommanders","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"hasAdmiralsQuartersRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

60a080604052346100e7576020816109b0803803809161001f8285610111565b8339810103126100e757516001600160a01b038116908190036100e75780156100fe576040516301ffc9a760e01b815263261c910560e21b6004820152602081602481855afa9081156100f3575f916100b4575b50156100a2576080526040516108679081610149823960805181818161010901528181610264015261057a0152f35b6347bd7c1d60e01b5f5260045260245ffd5b90506020813d6020116100eb575b816100cf60209383610111565b810103126100e7575180151581036100e7575f610073565b5f80fd5b3d91506100c2565b6040513d5f823e3d90fd5b6347bd7c1d60e01b5f525f60045260245ffd5b601f909101601f19168101906001600160401b0382119082101761013457604052565b634e487b7160e01b5f52604160045260245ffdfe6080806040526004361015610012575f80fd5b5f3560e01c90816324ea54f41461062657508063588b97c71461053357806366e943f1146104f957806369b3054b146104875780638e3d56931461041b578063a89f38a3146103e1578063ab4ba0f714610323578063b912d58c1461021d578063c0b534c2146101e3578063ccc57490146101bc578063e9d00d56146101825763ebc136d0146100a0575f80fd5b3461017e57602036600319011261017e576100b961065e565b604051632474521560e21b81527fb00be3d6a5434b97b328543d1486d56adcb7e74080170d1cdd7e0306c3d9ba3d60048201526001600160a01b03918216602482015290602090829060449082907f0000000000000000000000000000000000000000000000000000000000000000165afa8015610173576020915f91610146575b506040519015158152f35b6101669150823d841161016c575b61015e8183610674565b8101906106aa565b5f61013b565b503d610154565b6040513d5f823e3d90fd5b5f80fd5b3461017e57602036600319011261017e576001600160a01b036101a361065e565b165f526001602052602060405f20541515604051908152f35b3461017e575f36600319011261017e5760206040515f5160206108125f395f51905f528152f35b3461017e575f36600319011261017e5760206040517f025d8bbf3268be680d2605ebf6da15063b9915615bf1087dab336efc1bf970cb8152f35b3461017e57602036600319011261017e5761023661065e565b604051632474521560e21b81525f5160206108125f395f51905f5260048201523360248201526020816044817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa908115610173575f91610304575b50156102f1576001600160a01b03166102b48161073e565b156102df577f1e34673d1d14c032c95f75eeaf38870b6123c81b82b1ea97cccc7442d06ef6115f80a2005b630349cba160e61b5f5260045260245ffd5b630ea7d7ed60e21b5f523360045260245ffd5b61031d915060203d60201161016c5761015e8183610674565b8261029c565b3461017e575f36600319011261017e576040515f805480835281805260208301929183917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563915b8181106103cb5750505081610380910382610674565b604051918291602083019060208452518091526040830191905f5b8181106103a9575050500390f35b82516001600160a01b031684528594506020938401939092019160010161039b565b825484526020909301926001928301920161036a565b3461017e575f36600319011261017e5760206040517fb00be3d6a5434b97b328543d1486d56adcb7e74080170d1cdd7e0306c3d9ba3d8152f35b3461017e57602036600319011261017e576004355f54811015610473575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301546040516001600160a01b039091168152602090f35b634e487b7160e01b5f52603260045260245ffd5b3461017e57604036600319011261017e57600435600381101561017e57602435906001600160a01b038216820361017e5760405160f89190911b602082810191825260609390931b6001600160601b031916602183015260158252906104ee603582610674565b519020604051908152f35b3461017e575f36600319011261017e5760206040517f0d186688925976bbe6755ae984501c8e3e2b103a7af59fd803ab9c6d891ae7e08152f35b3461017e57602036600319011261017e5761054c61065e565b604051632474521560e21b81525f5160206108125f395f51905f5260048201523360248201526020816044817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa908115610173575f91610607575b50156102f1576001600160a01b03166105ca816106d7565b156105f5577f8962d9675f6e694d83eac853fc2c4cdac912219afd6e7aaa4f1ba35ff622af2f5f80a2005b63e12abecb60e01b5f5260045260245ffd5b610620915060203d60201161016c5761015e8183610674565b826105b2565b3461017e575f36600319011261017e57807f55435dd261a4b9b3364963f7738a7a662ad9c84396d64be3365284bb7f0a504160209252f35b600435906001600160a01b038216820361017e57565b90601f8019910116810190811067ffffffffffffffff82111761069657604052565b634e487b7160e01b5f52604160045260245ffd5b9081602091031261017e5751801515810361017e5790565b8054821015610473575f5260205f2001905f90565b805f52600160205260405f2054155f14610739575f54600160401b8110156106965761072361070d8260018594015f555f6106c2565b819391549060031b91821b915f19901b19161790565b90555f54905f52600160205260405f2055600190565b505f90565b5f81815260016020526040902054801561080b575f1981018181116107f7575f545f198101919082116107f7578181036107c1575b5050505f5480156107ad575f190161078b815f6106c2565b8154905f199060031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b6107e16107d161070d935f6106c2565b90549060031b1c9283925f6106c2565b90555f52600160205260405f20555f8080610773565b634e487b7160e01b5f52601160045260245ffd5b50505f9056fe7935bd0ae54bc31f548c14dba4d37c5c64b3f8ca900cb468fb8abd54d5894f55a26469706673582212201b3b909fcae4ca4184bc3429b38d8fa906013ced9f580316557b297c0706eeb164736f6c634300081c003300000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f3560e01c90816324ea54f41461062657508063588b97c71461053357806366e943f1146104f957806369b3054b146104875780638e3d56931461041b578063a89f38a3146103e1578063ab4ba0f714610323578063b912d58c1461021d578063c0b534c2146101e3578063ccc57490146101bc578063e9d00d56146101825763ebc136d0146100a0575f80fd5b3461017e57602036600319011261017e576100b961065e565b604051632474521560e21b81527fb00be3d6a5434b97b328543d1486d56adcb7e74080170d1cdd7e0306c3d9ba3d60048201526001600160a01b03918216602482015290602090829060449082907f00000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f165afa8015610173576020915f91610146575b506040519015158152f35b6101669150823d841161016c575b61015e8183610674565b8101906106aa565b5f61013b565b503d610154565b6040513d5f823e3d90fd5b5f80fd5b3461017e57602036600319011261017e576001600160a01b036101a361065e565b165f526001602052602060405f20541515604051908152f35b3461017e575f36600319011261017e5760206040515f5160206108125f395f51905f528152f35b3461017e575f36600319011261017e5760206040517f025d8bbf3268be680d2605ebf6da15063b9915615bf1087dab336efc1bf970cb8152f35b3461017e57602036600319011261017e5761023661065e565b604051632474521560e21b81525f5160206108125f395f51905f5260048201523360248201526020816044817f00000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f6001600160a01b03165afa908115610173575f91610304575b50156102f1576001600160a01b03166102b48161073e565b156102df577f1e34673d1d14c032c95f75eeaf38870b6123c81b82b1ea97cccc7442d06ef6115f80a2005b630349cba160e61b5f5260045260245ffd5b630ea7d7ed60e21b5f523360045260245ffd5b61031d915060203d60201161016c5761015e8183610674565b8261029c565b3461017e575f36600319011261017e576040515f805480835281805260208301929183917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563915b8181106103cb5750505081610380910382610674565b604051918291602083019060208452518091526040830191905f5b8181106103a9575050500390f35b82516001600160a01b031684528594506020938401939092019160010161039b565b825484526020909301926001928301920161036a565b3461017e575f36600319011261017e5760206040517fb00be3d6a5434b97b328543d1486d56adcb7e74080170d1cdd7e0306c3d9ba3d8152f35b3461017e57602036600319011261017e576004355f54811015610473575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301546040516001600160a01b039091168152602090f35b634e487b7160e01b5f52603260045260245ffd5b3461017e57604036600319011261017e57600435600381101561017e57602435906001600160a01b038216820361017e5760405160f89190911b602082810191825260609390931b6001600160601b031916602183015260158252906104ee603582610674565b519020604051908152f35b3461017e575f36600319011261017e5760206040517f0d186688925976bbe6755ae984501c8e3e2b103a7af59fd803ab9c6d891ae7e08152f35b3461017e57602036600319011261017e5761054c61065e565b604051632474521560e21b81525f5160206108125f395f51905f5260048201523360248201526020816044817f00000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f6001600160a01b03165afa908115610173575f91610607575b50156102f1576001600160a01b03166105ca816106d7565b156105f5577f8962d9675f6e694d83eac853fc2c4cdac912219afd6e7aaa4f1ba35ff622af2f5f80a2005b63e12abecb60e01b5f5260045260245ffd5b610620915060203d60201161016c5761015e8183610674565b826105b2565b3461017e575f36600319011261017e57807f55435dd261a4b9b3364963f7738a7a662ad9c84396d64be3365284bb7f0a504160209252f35b600435906001600160a01b038216820361017e57565b90601f8019910116810190811067ffffffffffffffff82111761069657604052565b634e487b7160e01b5f52604160045260245ffd5b9081602091031261017e5751801515810361017e5790565b8054821015610473575f5260205f2001905f90565b805f52600160205260405f2054155f14610739575f54600160401b8110156106965761072361070d8260018594015f555f6106c2565b819391549060031b91821b915f19901b19161790565b90555f54905f52600160205260405f2055600190565b505f90565b5f81815260016020526040902054801561080b575f1981018181116107f7575f545f198101919082116107f7578181036107c1575b5050505f5480156107ad575f190161078b815f6106c2565b8154905f199060031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b6107e16107d161070d935f6106c2565b90549060031b1c9283925f6106c2565b90555f52600160205260405f20555f8080610773565b634e487b7160e01b5f52601160045260245ffd5b50505f9056fe7935bd0ae54bc31f548c14dba4d37c5c64b3f8ca900cb468fb8abd54d5894f55a26469706673582212201b3b909fcae4ca4184bc3429b38d8fa906013ced9f580316557b297c0706eeb164736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f

-----Decoded View---------------
Arg [0] : _accessManager (address): 0x38fB5a7fa70103dCd9e8A969f3975A77E0fE755f

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000038fb5a7fa70103dcd9e8a969f3975a77e0fe755f


Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.