Source Code
Overview
HYPE Balance
HYPE Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers.
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Block | From | To | ||||
|---|---|---|---|---|---|---|---|
| 15939732 | 111 days ago | 3.26109225 HYPE | |||||
| 15939732 | 111 days ago | 0 HYPE | |||||
| 15939659 | 111 days ago | 3.89584274 HYPE | |||||
| 15939659 | 111 days ago | 0 HYPE | |||||
| 15679072 | 114 days ago | 35.98829567 HYPE | |||||
| 15679072 | 114 days ago | 0 HYPE | |||||
| 15678526 | 114 days ago | 20 HYPE | |||||
| 15678462 | 114 days ago | 20 HYPE | |||||
| 15659865 | 114 days ago | 1.005928 HYPE | |||||
| 15639865 | 114 days ago | 19 HYPE | |||||
| 15639724 | 114 days ago | 5 HYPE | |||||
| 15639642 | 114 days ago | 20 HYPE | |||||
| 15594380 | 115 days ago | 13.0416717 HYPE | |||||
| 15594380 | 115 days ago | 0 HYPE | |||||
| 15593735 | 115 days ago | 2.53119633 HYPE | |||||
| 15502613 | 116 days ago | 45.10049581 HYPE | |||||
| 15502613 | 116 days ago | 0 HYPE | |||||
| 15492239 | 116 days ago | 5.01569624 HYPE | |||||
| 15492239 | 116 days ago | 0 HYPE | |||||
| 15398558 | 117 days ago | 29.80467793 HYPE | |||||
| 15398558 | 117 days ago | 0 HYPE | |||||
| 15398535 | 117 days ago | 20.0850946 HYPE | |||||
| 15398535 | 117 days ago | 0 HYPE | |||||
| 15398509 | 117 days ago | 28.5203899 HYPE | |||||
| 15398509 | 117 days ago | 0 HYPE |
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
SwapGems
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {IWETH} from "./interfaces/IWETH.sol";
import {IUniswapV2Pair} from "./interfaces/IUniswapV2Pair.sol";
import {UniswapV2Library} from "./libs/UniswapV2Library.sol";
import {IUniswapV3Pool} from "./interfaces/IUniswapV3Pool.sol";
import {IUniswapV3SwapCallback} from "./interfaces/IUniswapV3SwapCallback.sol";
import {TickMath} from "./libs/TickMath.sol";
import {CallbackValidation} from "./libs/CallbackValidation.sol";
import {PoolAddress} from "./libs/PoolAddress.sol";
import {Path} from "./libs/Path.sol";
import {Constants} from "./libs/Constants.sol";
import {Storage} from "./Storage.sol";
import {SafeCast} from "./libs/SafeCast.sol";
import {SafeMath} from "./libs/SafeMath.sol";
contract SwapGems is
Storage,
IUniswapV3SwapCallback,
Initializable,
OwnableUpgradeable,
ReentrancyGuardUpgradeable
{
using SafeCast for uint256;
using SafeMath for uint;
using SafeERC20 for IERC20;
using Path for bytes;
receive() external payable {}
constructor() {}
// --------------------------- events ---------------------------
event FeeCollected(
address indexed token,
address indexed payer,
uint256 amount,
uint256 timestamp
);
event Deposit(address indexed payer, uint256 amount, uint256 timestamp);
event Withdraw(address indexed payer, uint256 amount, uint256 timestamp);
event ReferralFeeClaimed(
address indexed claimer,
uint256 amount,
uint256 timestamp
);
struct SwapCallbackData {
bytes path;
address payer;
}
struct ExactInputSingleParams {
address factoryAddress;
address poolAddress;
address tokenIn;
address tokenOut;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
// --------------------------- modifiers ---------------------------
modifier checkDeadline(uint256 deadline) {
require(
block.timestamp <= deadline,
"SwapGems: Transaction too old, deadline too small"
);
_;
}
modifier onlyReferralFeeManager() {
require(
msg.sender == referralFeeManager,
"SwapGems: you are not authorized"
);
_;
}
function initialize(
address _WETH,
address _feeCollector,
uint256 _feeRate
) public initializer {
__Ownable_init(msg.sender);
__ReentrancyGuard_init();
feeRate = _feeRate;
feeDenominator = 10000;
feeCollector = _feeCollector;
WETH = _WETH;
}
function takeFee(
address tokenIn,
uint256 amountIn
) internal returns (uint256) {
uint256 fee = amountIn.mul(feeRate).div(feeDenominator);
if (
(tokenIn == address(0) || tokenIn == WETH) &&
address(this).balance > fee
) {
(bool success, ) = address(feeCollector).call{value: fee}("");
require(success, "SwapGems: take fee error");
} else IERC20(tokenIn).safeTransferFrom(msg.sender, feeCollector, fee);
emit FeeCollected(tokenIn, msg.sender, fee, block.timestamp);
return fee;
}
function pay(
address token,
address payer,
address recipient,
uint256 value
) internal {
if (token == WETH && address(this).balance >= value) {
IWETH(WETH).deposit{value: value}();
IWETH(WETH).transfer(recipient, value);
} else if (payer == address(this)) {
IERC20(token).transfer(recipient, value);
} else {
IERC20(token).transferFrom(payer, recipient, value);
}
}
// ------------ v2 swap logic ----------------
function swapV2ExactIn(
address tokenIn,
address tokenOut,
uint256 amountIn,
uint256 amountOutMin,
address pairAddress
) public payable nonReentrant returns (uint amountOut) {
require(pairAddress != address(0), "SwapGems: invalid v2 pair address");
require(amountIn > 0, "SwapGems: swap amout in is zero");
bool nativeIn = false;
if (tokenIn == address(0)) {
require(
msg.value >= amountIn,
"SwapGems: amount in and tx value mismatch"
);
nativeIn = true;
tokenIn = WETH;
// refund eth
uint refundAmt = msg.value - amountIn;
if (refundAmt > 0) {
(bool success, ) = address(msg.sender).call{value: refundAmt}(
""
);
require(success, "SwapGems: refund ETH error");
}
uint256 fee = takeFee(address(0), amountIn);
amountIn = amountIn - fee;
}
if (nativeIn) {
pay(tokenIn, address(this), pairAddress, amountIn);
} else pay(tokenIn, msg.sender, pairAddress, amountIn);
bool nativeOut = false;
if (tokenOut == address(0)) nativeOut = true;
uint balanceBefore = nativeOut
? IERC20(WETH).balanceOf(address(this))
: IERC20(tokenOut).balanceOf(msg.sender);
IUniswapV2Pair pair = IUniswapV2Pair(pairAddress);
address token0 = pair.token0();
uint amountInput;
uint amountOutput;
{
// scope to avoid stack too deep errors
(uint reserve0, uint reserve1, ) = pair.getReserves();
(uint reserveInput, uint reserveOutput) = tokenIn == token0
? (reserve0, reserve1)
: (reserve1, reserve0);
amountInput = IERC20(tokenIn).balanceOf(address(pair)).sub(
reserveInput
);
amountOutput = UniswapV2Library.getAmountOut(
amountInput,
reserveInput,
reserveOutput,
10
);
}
(uint amount0Out, uint amount1Out) = tokenIn == token0
? (uint(0), amountOutput)
: (amountOutput, uint(0));
address to = nativeOut ? address(this) : msg.sender;
pair.swap(amount0Out, amount1Out, to, new bytes(0));
if (nativeOut) {
amountOut = IERC20(WETH).balanceOf(address(this)).sub(
balanceBefore
);
IWETH(WETH).withdraw(amountOut);
uint256 fee = takeFee(address(0), amountOut);
(bool success, ) = address(msg.sender).call{value: amountOut - fee}(
""
);
require(success, "SwapGems: send ETH out to user error");
} else {
amountOut = IERC20(tokenOut).balanceOf(msg.sender).sub(
balanceBefore
);
}
require(
amountOut >= amountOutMin,
"SwapGems: amount out less than minimal output amount"
);
}
// ------------ v3 swap logic ----------------
function exactInputInternal(
address poolAddress,
uint256 amountIn,
address recipient,
uint160 sqrtPriceLimitX96,
SwapCallbackData memory data
) private returns (uint256 amountOut) {
// allow swapping to the router address with address 0
if (recipient == address(0)) recipient = address(this);
(address tokenIn, address tokenOut, ) = data.path.decodeFirstPool();
bool zeroForOne = tokenIn < tokenOut;
(int256 amount0, int256 amount1) = IUniswapV3Pool(poolAddress).swap(
recipient,
zeroForOne,
amountIn.toInt256(),
sqrtPriceLimitX96 == 0
? (
zeroForOne
? TickMath.MIN_SQRT_RATIO + 1
: TickMath.MAX_SQRT_RATIO - 1
)
: sqrtPriceLimitX96,
abi.encode(data)
);
return uint256(-(zeroForOne ? amount1 : amount0));
}
function exactOutputInternal(
address poolAddress,
uint256 amountOut,
address recipient,
uint160 sqrtPriceLimitX96,
SwapCallbackData memory data
) private returns (uint256 amountIn) {
// allow swapping to the router address with address 0
if (recipient == address(0)) recipient = address(this);
(address tokenOut, address tokenIn, ) = data.path.decodeFirstPool();
bool zeroForOne = tokenIn < tokenOut;
(int256 amount0Delta, int256 amount1Delta) = IUniswapV3Pool(poolAddress)
.swap(
recipient,
zeroForOne,
-amountOut.toInt256(),
sqrtPriceLimitX96 == 0
? (
zeroForOne
? TickMath.MIN_SQRT_RATIO + 1
: TickMath.MAX_SQRT_RATIO - 1
)
: sqrtPriceLimitX96,
abi.encode(data)
);
uint256 amountOutReceived;
(amountIn, amountOutReceived) = zeroForOne
? (uint256(amount0Delta), uint256(-amount1Delta))
: (uint256(amount1Delta), uint256(-amount0Delta));
// it's technically possible to not receive the full output amount,
// so if no price limit has been specified, require this possibility away
if (sqrtPriceLimitX96 == 0) require(amountOutReceived == amountOut);
}
function hyperswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata _data
) external override {
_uniswapV3SwapCallback(amount0Delta, amount1Delta, _data);
}
function laminarV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata _data
) external override {
_uniswapV3SwapCallback(amount0Delta, amount1Delta, _data);
}
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata _data
) external override {
_uniswapV3SwapCallback(amount0Delta, amount1Delta, _data);
}
function _uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata _data
) internal {
require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
SwapCallbackData memory data = abi.decode(_data, (SwapCallbackData));
(address tokenIn, address tokenOut, uint24 fee) = data
.path
.decodeFirstPool();
IUniswapV3Pool pool = CallbackValidation.verifyCallback(
factoryV3,
tokenIn,
tokenOut,
fee
);
(bool isExactInput, uint256 amountToPay) = amount0Delta > 0
? (tokenIn < tokenOut, uint256(amount0Delta))
: (tokenOut < tokenIn, uint256(amount1Delta));
if (isExactInput) {
pay(tokenIn, data.payer, msg.sender, amountToPay);
} else {
// either initiate the next swap or pay
if (data.path.hasMultiplePools()) {
data.path = data.path.skipToken();
exactOutputInternal(
address(pool),
amountToPay,
msg.sender,
0,
data
);
} else {
tokenIn = tokenOut; // swap in/out because exact output swaps are reversed
pay(tokenIn, data.payer, msg.sender, amountToPay);
}
}
}
function swapV3ExactIn(
ExactInputSingleParams memory params
)
external
payable
nonReentrant
checkDeadline(params.deadline)
returns (uint256 amountOut)
{
// set factoryV3 to state for callback validation use
factoryV3 = params.factoryAddress;
require(params.amountIn > 0, "SwapGems: amount in is zero");
if (params.tokenIn == WETH || params.tokenIn == address(0)) {
params.tokenIn = WETH;
require(
msg.value >= params.amountIn,
"SwapGems: amount in and value mismatch"
);
// refund
uint amount = msg.value - params.amountIn;
if (amount > 0) {
(bool success, ) = address(msg.sender).call{value: amount}("");
require(success, "SwapGems: refund ETH error");
}
}
bool nativeOut = false;
if (params.tokenOut == WETH || params.tokenOut == address(0)) {
params.tokenOut = WETH;
nativeOut = true;
}
if (!nativeOut) {
uint256 fee = takeFee(params.tokenIn, params.amountIn);
params.amountIn = params.amountIn - fee;
}
uint24 poolFee;
if (factoryV3 == Constants.KITTENSWAP_V3_FACTORY) {
poolFee = IUniswapV3Pool(params.poolAddress).tickSpacing();
} else {
poolFee = IUniswapV3Pool(params.poolAddress).fee();
}
amountOut = exactInputInternal(
params.poolAddress,
params.amountIn,
nativeOut ? address(0) : params.recipient,
params.sqrtPriceLimitX96,
SwapCallbackData({
path: abi.encodePacked(
params.tokenIn,
poolFee,
params.tokenOut
),
payer: msg.sender
})
);
require(
amountOut >= params.amountOutMinimum,
"SwapGems: insufficient out amount"
);
if (nativeOut) {
IWETH(WETH).withdraw(amountOut);
uint256 fee = takeFee(address(0), amountOut);
(bool success, ) = address(params.recipient).call{
value: amountOut - fee
}("");
require(success, "SwapGems: send ETH out error");
}
}
// ----------------------- admin_logic -------------------
function updateConfig(
address _feeCollector,
uint256 _feeRate
) external onlyOwner {
feeCollector = _feeCollector;
feeRate = _feeRate;
}
function updateReferralConfig(
address _referralFeeManager,
address _referralFeeClaimSigner
) external onlyOwner {
referralFeeManager = _referralFeeManager;
referralFeeClaimSigner = _referralFeeClaimSigner;
}
// ------- deposit, withdraw and claim
function deposit() external payable onlyReferralFeeManager {
require(msg.value > 0, "SwapGems: deposit value must > 0");
emit Deposit(msg.sender, msg.value, block.timestamp);
}
function withdraw(uint256 amt) external onlyReferralFeeManager {
require(
address(this).balance >= amt,
"SwapGems: insufficient balance to withdraw"
);
(bool isSuccessed, ) = msg.sender.call{value: amt}("");
require(isSuccessed, "SwapGems: withdraw error");
emit Withdraw(msg.sender, amt, block.timestamp);
}
function claimReferralFee(
bytes memory signature,
bytes32 messageHash,
uint256 amt,
uint256 deadline
) external checkDeadline(deadline) {
require(
address(this).balance >= amt,
"SwapGems: insufficient balance to withdraw"
);
require(
claimedFeeKv[msg.sender].lastDeadline < deadline,
"SwapGems: last deadline must smaller than deadline"
);
bytes memory receiptStr = bytes(Strings.toHexString(msg.sender));
bytes memory amtStr = bytes(Strings.toString(amt));
bytes memory deadlineStr = bytes(Strings.toString(deadline));
bytes memory messageBytes = bytes.concat(
receiptStr,
amtStr,
deadlineStr
);
bytes32 msgHash = MessageHashUtils.toEthSignedMessageHash(messageBytes);
require(msgHash == messageHash, "SwapGems: invalid message hash");
address signer = ECDSA.recover(msgHash, signature);
require(
signer == referralFeeClaimSigner,
"SwapGems: claim signer is invalid"
);
(bool isSuccessed, ) = msg.sender.call{value: amt}("");
require(isSuccessed, "SwapGems: claim error");
claimedFeeKv[msg.sender].total += amt;
claimedFeeKv[msg.sender].lastDeadline = deadline;
emit ReferralFeeClaimed(msg.sender, amt, block.timestamp);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
/// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
struct ReentrancyGuardStorage {
uint256 _status;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
assembly {
$.slot := ReentrancyGuardStorageLocation
}
}
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
$._status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// On the first call to nonReentrant, _status will be NOT_ENTERED
if ($._status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
$._status = ENTERED;
}
function _nonReentrantAfter() private {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
$._status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
return $._status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.8.0;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH is IERC20 {
/// @notice Deposit ether to get wrapped ether
function deposit() external payable;
/// @notice Withdraw wrapped ether to get ether
function withdraw(uint256) external;
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.5.0;
interface IUniswapV2Pair {
event Approval(address indexed owner, address indexed spender, uint value);
event Transfer(address indexed from, address indexed to, uint value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint);
function balanceOf(address owner) external view returns (uint);
function allowance(
address owner,
address spender
) external view returns (uint);
function approve(address spender, uint value) external returns (bool);
function transfer(address to, uint value) external returns (bool);
function transferFrom(
address from,
address to,
uint value
) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint);
function permit(
address owner,
address spender,
uint value,
uint deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
event Mint(address indexed sender, uint amount0, uint amount1);
event Burn(
address indexed sender,
uint amount0,
uint amount1,
address indexed to
);
event Swap(
address indexed sender,
uint amount0In,
uint amount1In,
uint amount0Out,
uint amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()
external
view
returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint);
function price1CumulativeLast() external view returns (uint);
function kLast() external view returns (uint);
function mint(address to) external returns (uint liquidity);
function burn(address to) external returns (uint amount0, uint amount1);
function swap(
uint amount0Out,
uint amount1Out,
address to,
bytes calldata data
) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.5.0;
import "../interfaces/IUniswapV2Pair.sol";
import "./SafeMath.sol";
library UniswapV2Library {
using SafeMath for uint;
// returns sorted token addresses, used to handle return values from pairs sorted in this order
function sortTokens(
address tokenA,
address tokenB
) internal pure returns (address token0, address token1) {
require(tokenA != tokenB, "UniswapV2Library: IDENTICAL_ADDRESSES");
(token0, token1) = tokenA < tokenB
? (tokenA, tokenB)
: (tokenB, tokenA);
require(token0 != address(0), "UniswapV2Library: ZERO_ADDRESS");
}
// calculates the CREATE2 address for a pair without making any external calls
function pairFor(
address factory,
address tokenA,
address tokenB
) internal pure returns (address pair) {
(address token0, address token1) = sortTokens(tokenA, tokenB);
pair = address(
uint160(
bytes20(
keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encodePacked(token0, token1)),
hex"96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f" // init code hash
)
)
)
)
);
}
// fetches and sorts the reserves for a pair
function getReserves(
address factory,
address tokenA,
address tokenB
) internal view returns (uint reserveA, uint reserveB) {
(address token0, ) = sortTokens(tokenA, tokenB);
(uint reserve0, uint reserve1, ) = IUniswapV2Pair(
pairFor(factory, tokenA, tokenB)
).getReserves();
(reserveA, reserveB) = tokenA == token0
? (reserve0, reserve1)
: (reserve1, reserve0);
}
// given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
function quote(
uint amountA,
uint reserveA,
uint reserveB
) internal pure returns (uint amountB) {
require(amountA > 0, "UniswapV2Library: INSUFFICIENT_AMOUNT");
require(
reserveA > 0 && reserveB > 0,
"UniswapV2Library: INSUFFICIENT_LIQUIDITY"
);
amountB = amountA.mul(reserveB) / reserveA;
}
// given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
function getAmountOut(
uint amountIn,
uint reserveIn,
uint reserveOut,
uint fee
) internal pure returns (uint amountOut) {
require(amountIn > 0, "UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT");
require(
reserveIn > 0 && reserveOut > 0,
"UniswapV2Library: INSUFFICIENT_LIQUIDITY"
);
require(fee < 1000, "SwapGems: V2 FEE EXCEEDS 1000");
uint amountInWithFee = amountIn.mul(1000 - fee);
uint numerator = amountInWithFee.mul(reserveOut);
uint denominator = reserveIn.mul(1000).add(amountInWithFee);
amountOut = numerator / denominator;
}
// given an output amount of an asset and pair reserves, returns a required input amount of the other asset
function getAmountIn(
uint amountOut,
uint reserveIn,
uint reserveOut
) internal pure returns (uint amountIn) {
require(amountOut > 0, "UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT");
require(
reserveIn > 0 && reserveOut > 0,
"UniswapV2Library: INSUFFICIENT_LIQUIDITY"
);
uint numerator = reserveIn.mul(amountOut).mul(1000);
uint denominator = reserveOut.sub(amountOut).mul(997);
amountIn = (numerator / denominator).add(1);
}
// performs chained getAmountOut calculations on any number of pairs
function getAmountsOut(
address factory,
uint amountIn,
address[] memory path
) internal view returns (uint[] memory amounts) {
require(path.length >= 2, "UniswapV2Library: INVALID_PATH");
amounts = new uint[](path.length);
amounts[0] = amountIn;
for (uint i; i < path.length - 1; i++) {
(uint reserveIn, uint reserveOut) = getReserves(
factory,
path[i],
path[i + 1]
);
amounts[i + 1] = getAmountOut(
amounts[i],
reserveIn,
reserveOut,
10
);
}
}
// performs chained getAmountIn calculations on any number of pairs
function getAmountsIn(
address factory,
uint amountOut,
address[] memory path
) internal view returns (uint[] memory amounts) {
require(path.length >= 2, "UniswapV2Library: INVALID_PATH");
amounts = new uint[](path.length);
amounts[amounts.length - 1] = amountOut;
for (uint i = path.length - 1; i > 0; i--) {
(uint reserveIn, uint reserveOut) = getReserves(
factory,
path[i - 1],
path[i]
);
amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
// just for hyperevm kitten swap pool
function tickSpacing() external view returns (uint24);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
function hyperswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
function laminarV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
/// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
int24 internal constant MIN_TICK = -887272;
/// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
int24 internal constant MAX_TICK = -MIN_TICK;
/// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
uint160 internal constant MIN_SQRT_RATIO = 4295128739;
/// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
uint160 internal constant MAX_SQRT_RATIO =
1461446703485210103287273052203988822378723970342;
/// @notice Calculates sqrt(1.0001^tick) * 2^96
/// @dev Throws if |tick| > max tick
/// @param tick The input tick for the above formula
/// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
/// at the given tick
function getSqrtRatioAtTick(
int24 tick
) internal pure returns (uint160 sqrtPriceX96) {
uint256 absTick = tick < 0
? uint256(-int256(tick))
: uint256(int256(tick));
require(absTick <= toUint256(MAX_TICK), "T");
uint256 ratio = absTick & 0x1 != 0
? 0xfffcb933bd6fad37aa2d162d1a594001
: 0x100000000000000000000000000000000;
if (absTick & 0x2 != 0)
ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
if (absTick & 0x4 != 0)
ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
if (absTick & 0x8 != 0)
ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
if (absTick & 0x10 != 0)
ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
if (absTick & 0x20 != 0)
ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
if (absTick & 0x40 != 0)
ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
if (absTick & 0x80 != 0)
ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
if (absTick & 0x100 != 0)
ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
if (absTick & 0x200 != 0)
ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
if (absTick & 0x400 != 0)
ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
if (absTick & 0x800 != 0)
ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
if (absTick & 0x1000 != 0)
ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
if (absTick & 0x2000 != 0)
ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
if (absTick & 0x4000 != 0)
ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
if (absTick & 0x8000 != 0)
ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
if (absTick & 0x10000 != 0)
ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
if (absTick & 0x20000 != 0)
ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
if (absTick & 0x40000 != 0)
ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
if (absTick & 0x80000 != 0)
ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
if (tick > 0) ratio = type(uint256).max / ratio;
// this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
// we then downcast because we know the result always fits within 160 bits due to our tick input constraint
// we round up in the division so getTickAtSqrtRatio of the output price is always consistent
sqrtPriceX96 = uint160(
(ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)
);
}
/// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
/// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
/// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
function getTickAtSqrtRatio(
uint160 sqrtPriceX96
) internal pure returns (int24 tick) {
// second inequality must be < because the price can never reach the price at the max tick
require(
sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO,
"R"
);
uint256 ratio = uint256(sqrtPriceX96) << 32;
uint256 r = ratio;
uint256 msb = 0;
assembly {
let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(5, gt(r, 0xFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(4, gt(r, 0xFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(3, gt(r, 0xFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(2, gt(r, 0xF))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := shl(1, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly {
let f := gt(r, 0x1)
msb := or(msb, f)
}
if (msb >= 128) r = ratio >> (msb - 127);
else r = ratio << (127 - msb);
int256 log_2 = (int256(msb) - 128) << 64;
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(63, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(62, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(61, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(60, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(59, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(58, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(57, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(56, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(55, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(54, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(53, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(52, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(51, f))
r := shr(f, r)
}
assembly {
r := shr(127, mul(r, r))
let f := shr(128, r)
log_2 := or(log_2, shl(50, f))
}
int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
int24 tickLow = int24(
(log_sqrt10001 - 3402992956809132418596140100660247210) >> 128
);
int24 tickHi = int24(
(log_sqrt10001 + 291339464771989622907027621153398088495) >> 128
);
tick = tickLow == tickHi
? tickLow
: getSqrtRatioAtTick(tickHi) <= sqrtPriceX96
? tickHi
: tickLow;
}
function toUint256(int24 value) public pure returns (uint256) {
require(value >= 0, "Input value is negative");
int256 convertedInt = int256(value);
return uint256(convertedInt);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.6;
import {IUniswapV3Pool} from "../interfaces/IUniswapV3Pool.sol";
import {PoolAddress} from "./PoolAddress.sol";
/// @notice Provides validation for callbacks from Uniswap V3 Pools
library CallbackValidation {
/// @notice Returns the address of a valid Uniswap V3 Pool
/// @param factory The contract address of the Uniswap V3 factory
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The V3 pool contract address
function verifyCallback(
address factory,
address tokenA,
address tokenB,
uint24 fee
) internal view returns (IUniswapV3Pool pool) {
return
verifyCallback(
factory,
PoolAddress.getPoolKey(tokenA, tokenB, fee)
);
}
/// @notice Returns the address of a valid Uniswap V3 Pool
/// @param factory The contract address of the Uniswap V3 factory
/// @param poolKey The identifying key of the V3 pool
/// @return pool The V3 pool contract address
function verifyCallback(
address factory,
PoolAddress.PoolKey memory poolKey
) internal view returns (IUniswapV3Pool pool) {
pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey));
require(msg.sender == address(pool));
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import {Constants} from "./Constants.sol";
import {ICLFactory} from "../interfaces/ICLFactory.sol";
import {Clones} from "@openzeppelin/contracts/proxy/Clones.sol";
/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
/// @notice The identifying key of the pool
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
/// @notice Returns PoolKey: the ordered tokens with the matched fee levels
/// @param tokenA The first token of a pool, unsorted
/// @param tokenB The second token of a pool, unsorted
/// @param fee The fee level of the pool
/// @return Poolkey The pool details with ordered token0 and token1 assignments
function getPoolKey(
address tokenA,
address tokenB,
uint24 fee
) internal pure returns (PoolKey memory) {
if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
}
/// @notice Deterministically computes the pool address given the factory and PoolKey
/// @param factory The Uniswap V3 factory contract address
/// @param key The PoolKey
/// @return pool The contract address of the V3 pool
function computeAddress(
address factory,
PoolKey memory key
) internal view returns (address pool) {
require(key.token0 < key.token1);
if (factory == address(Constants.HYPERSWAP_V3_FACTORY)) {
// hyperswap v3(mainnet)
bytes32 pubKey = keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
Constants.HYPERSWAP_POOL_INIT_CODE_HASH
)
);
// bytes32 to address:
assembly {
mstore(0x0, pubKey)
pool := mload(0x0)
}
} else if (factory == address(Constants.LAMINARSWAP_V3_FACTORY)) {
// laminar v3(mainnet)
bytes32 pubKey = keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
Constants.LAMINARSWAP_POOL_INIT_CODE_HASH
)
);
// bytes32 to address:
assembly {
mstore(0x0, pubKey)
pool := mload(0x0)
}
} else if (factory == address(Constants.KITTENSWAP_V3_FACTORY)) {
pool = Clones.predictDeterministicAddress(
ICLFactory(factory).poolImplementation(),
keccak256(abi.encode(key.token0, key.token1, key.fee)),
factory
);
} else if (factory == address(Constants.PRJX_V3_FACTORY)) {
// prjx v3(mainnet)
bytes32 pubKey = keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
Constants.PRJX_POOL_INIT_CODE_HASH
)
);
// bytes32 to address:
assembly {
mstore(0x0, pubKey)
pool := mload(0x0)
}
} else {
// uniswap v3(mainnet)
bytes32 pubKey = keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
Constants.UNISWAP_POOL_INIT_CODE_HASH
)
);
// bytes32 to address:
assembly {
mstore(0x0, pubKey)
pool := mload(0x0)
}
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import "./BytesLib.sol";
/// @title Functions for manipulating path data for multihop swaps
library Path {
using BytesLib for bytes;
/// @dev The length of the bytes encoded address
uint256 private constant ADDR_SIZE = 20;
/// @dev The length of the bytes encoded fee
uint256 private constant FEE_SIZE = 3;
/// @dev The offset of a single token address and pool fee
uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE;
/// @dev The offset of an encoded pool key
uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE;
/// @dev The minimum length of an encoding that contains 2 or more pools
uint256 private constant MULTIPLE_POOLS_MIN_LENGTH =
POP_OFFSET + NEXT_OFFSET;
/// @notice Returns true iff the path contains two or more pools
/// @param path The encoded swap path
/// @return True if path contains two or more pools, otherwise false
function hasMultiplePools(bytes memory path) internal pure returns (bool) {
return path.length >= MULTIPLE_POOLS_MIN_LENGTH;
}
/// @notice Returns the number of pools in the path
/// @param path The encoded swap path
/// @return The number of pools in the path
function numPools(bytes memory path) internal pure returns (uint256) {
// Ignore the first token address. From then on every fee and token offset indicates a pool.
return ((path.length - ADDR_SIZE) / NEXT_OFFSET);
}
/// @notice Decodes the first pool in path
/// @param path The bytes encoded swap path
/// @return tokenA The first token of the given pool
/// @return tokenB The second token of the given pool
/// @return fee The fee level of the pool
function decodeFirstPool(
bytes memory path
) internal pure returns (address tokenA, address tokenB, uint24 fee) {
tokenA = path.toAddress(0);
fee = path.toUint24(ADDR_SIZE);
tokenB = path.toAddress(NEXT_OFFSET);
}
/// @notice Gets the segment corresponding to the first pool in the path
/// @param path The bytes encoded swap path
/// @return The segment containing all data necessary to target the first pool in the path
function getFirstPool(
bytes memory path
) internal pure returns (bytes memory) {
return path.slice(0, POP_OFFSET);
}
/// @notice Skips a token + fee element from the buffer and returns the remainder
/// @param path The swap path
/// @return The remaining token + fee elements in the path
function skipToken(bytes memory path) internal pure returns (bytes memory) {
return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
library Constants {
address internal constant HYPERSWAP_V3_FACTORY =
0xB1c0fa0B789320044A6F623cFe5eBda9562602E3;
bytes32 internal constant HYPERSWAP_POOL_INIT_CODE_HASH =
0xe3572921be1688dba92df30c6781b8770499ff274d20ae9b325f4242634774fb;
address internal constant KITTENSWAP_V3_FACTORY =
0x2E08F5Ff603E4343864B14599CAeDb19918BDCaF;
address internal constant LAMINARSWAP_V3_FACTORY =
0x40059A6F242C3de0E639693973004921B04D96AD;
bytes32 internal constant LAMINARSWAP_POOL_INIT_CODE_HASH =
0x37dc715da5db6e8a4a7c5306fa01aad3ce7450a2013b27b10119c0e85dcf602b;
address internal constant PRJX_V3_FACTORY =
0xFf7B3e8C00e57ea31477c32A5B52a58Eea47b072;
bytes32 internal constant PRJX_POOL_INIT_CODE_HASH =
0x7ef2b01a451cbf890790278981756372e549443802ece149dc0b592cbc114ee9;
bytes32 internal constant UNISWAP_POOL_INIT_CODE_HASH =
0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
contract Storage {
uint256 public feeRate;
uint256 public feeDenominator;
address public feeCollector;
address public WETH;
address internal factoryV3;
address public referralFeeManager;
address public referralFeeClaimSigner;
mapping(address => ReferralFeeClaimInfo) public claimedFeeKv;
struct ReferralFeeClaimInfo {
uint256 total;
uint256 lastDeadline;
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Safe casting methods
/// @notice Contains methods for safely casting between types
library SafeCast {
/// @notice Cast a uint256 to a uint160, revert on overflow
/// @param y The uint256 to be downcasted
/// @return z The downcasted integer, now type uint160
function toUint160(uint256 y) internal pure returns (uint160 z) {
require((z = uint160(y)) == y);
}
/// @notice Cast a int256 to a int128, revert on overflow or underflow
/// @param y The int256 to be downcasted
/// @return z The downcasted integer, now type int128
function toInt128(int256 y) internal pure returns (int128 z) {
require((z = int128(y)) == y);
}
/// @notice Cast a uint256 to a int256, revert on overflow
/// @param y The uint256 to be casted
/// @return z The casted integer, now type int256
function toInt256(uint256 y) internal pure returns (int256 z) {
require(y < 2 ** 255);
z = int256(y);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity >=0.6.6;
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint x, uint y) internal pure returns (uint z) {
require((z = x + y) >= x, "ds-math-add-overflow");
}
function sub(uint x, uint y) internal pure returns (uint z) {
require((z = x - y) <= x, "ds-math-sub-underflow");
}
function mul(uint x, uint y) internal pure returns (uint z) {
require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow");
}
function div(uint a, uint b) internal pure returns (uint) {
assert(b > 0);
return a / b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
interface ICLFactory {
function poolImplementation() external view returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/Clones.sol)
pragma solidity ^0.8.20;
import {Create2} from "../utils/Create2.sol";
import {Errors} from "../utils/Errors.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
* deploying minimal proxy contracts, also known as "clones".
*
* > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
* > a minimal bytecode implementation that delegates all calls to a known, fixed address.
*
* The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
* (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
* deterministic method.
*/
library Clones {
error CloneArgumentsTooLong();
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create opcode, which should never revert.
*/
function clone(address implementation) internal returns (address instance) {
return clone(implementation, 0);
}
/**
* @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
* to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function clone(address implementation, uint256 value) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create(value, 0x09, 0x37)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation`.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy
* the clone. Using the same `implementation` and `salt` multiple times will revert, since
* the clones cannot be deployed twice at the same address.
*/
function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
return cloneDeterministic(implementation, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
* a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministic(
address implementation,
bytes32 salt,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
assembly ("memory-safe") {
// Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
// of the `implementation` address with the bytecode before the address.
mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
// Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
instance := create2(value, 0x09, 0x37, salt)
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(add(ptr, 0x38), deployer)
mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
mstore(add(ptr, 0x14), implementation)
mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
mstore(add(ptr, 0x58), salt)
mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
*/
function predictDeterministicAddress(
address implementation,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddress(implementation, salt, address(this));
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create opcode, which should never revert.
*/
function cloneWithImmutableArgs(address implementation, bytes memory args) internal returns (address instance) {
return cloneWithImmutableArgs(implementation, args, 0);
}
/**
* @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value`
* parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneWithImmutableArgs(
address implementation,
bytes memory args,
uint256 value
) internal returns (address instance) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
assembly ("memory-safe") {
instance := create(value, add(bytecode, 0x20), mload(bytecode))
}
if (instance == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom
* immutable arguments. These are provided through `args` and cannot be changed after deployment. To
* access the arguments within the implementation, use {fetchCloneArgs}.
*
* This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same
* `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice
* at the same address.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal returns (address instance) {
return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0);
}
/**
* @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs],
* but with a `value` parameter to send native currency to the new contract.
*
* NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
* to always have enough balance for new deployments. Consider exposing this function under a payable method.
*/
function cloneDeterministicWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
uint256 value
) internal returns (address instance) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.deploy(value, salt, bytecode);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt,
address deployer
) internal pure returns (address predicted) {
bytes memory bytecode = _cloneCodeWithImmutableArgs(implementation, args);
return Create2.computeAddress(salt, keccak256(bytecode), deployer);
}
/**
* @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}.
*/
function predictDeterministicAddressWithImmutableArgs(
address implementation,
bytes memory args,
bytes32 salt
) internal view returns (address predicted) {
return predictDeterministicAddressWithImmutableArgs(implementation, args, salt, address(this));
}
/**
* @dev Get the immutable args attached to a clone.
*
* - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this
* function will return an empty array.
* - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or
* `cloneDeterministicWithImmutableArgs`, this function will return the args array used at
* creation.
* - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This
* function should only be used to check addresses that are known to be clones.
*/
function fetchCloneArgs(address instance) internal view returns (bytes memory) {
bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short
assembly ("memory-safe") {
extcodecopy(instance, add(result, 32), 45, mload(result))
}
return result;
}
/**
* @dev Helper that prepares the initcode of the proxy with immutable args.
*
* An assembly variant of this function requires copying the `args` array, which can be efficiently done using
* `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using
* abi.encodePacked is more expensive but also more portable and easier to review.
*
* NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes.
* With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes.
*/
function _cloneCodeWithImmutableArgs(
address implementation,
bytes memory args
) private pure returns (bytes memory) {
if (args.length > 24531) revert CloneArgumentsTooLong();
return
abi.encodePacked(
hex"61",
uint16(args.length + 45),
hex"3d81600a3d39f3363d3d373d3d3d363d73",
implementation,
hex"5af43d82803e903d91602b57fd5bf3",
args
);
}
}// SPDX-License-Identifier: GPL-2.0-or-later /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.5.0; library BytesLib { function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_start + _length >= _start, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add( add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)) ) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add( add( add(_bytes, lengthmod), mul(0x20, iszero(lengthmod)) ), _start ) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress( bytes memory _bytes, uint256 _start ) internal pure returns (address) { require(_start + 20 >= _start, "toAddress_overflow"); require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div( mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000 ) } return tempAddress; } function toUint24( bytes memory _bytes, uint256 _start ) internal pure returns (uint24) { require(_start + 3 >= _start, "toUint24_overflow"); require(_bytes.length >= _start + 3, "toUint24_outOfBounds"); uint24 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x3), _start)) } return tempUint; } }
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
* `CREATE2` can be used to compute in advance the address where a smart
* contract will be deployed, which allows for interesting new mechanisms known
* as 'counterfactual interactions'.
*
* See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
* information.
*/
library Create2 {
/**
* @dev There's no code to deploy.
*/
error Create2EmptyBytecode();
/**
* @dev Deploys a contract using `CREATE2`. The address where the contract
* will be deployed can be known in advance via {computeAddress}.
*
* The bytecode for a contract can be obtained from Solidity with
* `type(contractName).creationCode`.
*
* Requirements:
*
* - `bytecode` must not be empty.
* - `salt` must have not been used for `bytecode` already.
* - the factory must have a balance of at least `amount`.
* - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
*/
function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
if (bytecode.length == 0) {
revert Create2EmptyBytecode();
}
assembly ("memory-safe") {
addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
// if no address was created, and returndata is not empty, bubble revert
if and(iszero(addr), not(iszero(returndatasize()))) {
let p := mload(0x40)
returndatacopy(p, 0, returndatasize())
revert(p, returndatasize())
}
}
if (addr == address(0)) {
revert Errors.FailedDeployment();
}
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
* `bytecodeHash` or `salt` will result in a new destination address.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
return computeAddress(salt, bytecodeHash, address(this));
}
/**
* @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
* `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
*/
function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
assembly ("memory-safe") {
let ptr := mload(0x40) // Get free memory pointer
// | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... |
// |-------------------|---------------------------------------------------------------------------|
// | bytecodeHash | CCCCCCCCCCCCC...CC |
// | salt | BBBBBBBBBBBBB...BB |
// | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA |
// | 0xFF | FF |
// |-------------------|---------------------------------------------------------------------------|
// | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
// | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |
mstore(add(ptr, 0x40), bytecodeHash)
mstore(add(ptr, 0x20), salt)
mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
mstore8(start, 0xff)
addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": true,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"FeeCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"ReferralFeeClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"bytes32","name":"messageHash","type":"bytes32"},{"internalType":"uint256","name":"amt","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"claimReferralFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimedFeeKv","outputs":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"lastDeadline","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeDenominator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int256","name":"amount0Delta","type":"int256"},{"internalType":"int256","name":"amount1Delta","type":"int256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"hyperswapV3SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_WETH","type":"address"},{"internalType":"address","name":"_feeCollector","type":"address"},{"internalType":"uint256","name":"_feeRate","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"amount0Delta","type":"int256"},{"internalType":"int256","name":"amount1Delta","type":"int256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"laminarV3SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"referralFeeClaimSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"referralFeeManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMin","type":"uint256"},{"internalType":"address","name":"pairAddress","type":"address"}],"name":"swapV2ExactIn","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"factoryAddress","type":"address"},{"internalType":"address","name":"poolAddress","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOutMinimum","type":"uint256"},{"internalType":"uint160","name":"sqrtPriceLimitX96","type":"uint160"}],"internalType":"struct SwapGems.ExactInputSingleParams","name":"params","type":"tuple"}],"name":"swapV3ExactIn","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"int256","name":"amount0Delta","type":"int256"},{"internalType":"int256","name":"amount1Delta","type":"int256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"uniswapV3SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeCollector","type":"address"},{"internalType":"uint256","name":"_feeRate","type":"uint256"}],"name":"updateConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_referralFeeManager","type":"address"},{"internalType":"address","name":"_referralFeeClaimSigner","type":"address"}],"name":"updateReferralConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amt","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
608080604052346015576132f0908161001a8239f35b5f80fdfe6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80630a2347701461015f5780631794bb3c1461015a578063180b0d7e1461015557806318a74064146101505780632e1a7d4d1461014b5780633c1839e7146101465780635b9e90061461014157806362583a031461013c578063715018a6146101375780638da5cb5b14610132578063978bbdb91461012d578063ad5c464814610128578063c415b95c14610123578063d0e30db01461011e578063d540999514610119578063daaaa5cc14610114578063e81f56f41461010a578063f2fde38b1461010f578063fa461e331461010a578063fa85398b1461010a5763fe08b7800361000e57611036565b610f04565b611009565b610e83565b610d2a565b610c23565b610bfb565b610bd3565b610bb7565b610b83565b610b1c565b610a98565b610515565b6104b2565b6103e7565b61039a565b61037d565b6101fa565b61017e565b5f91031261016e57565b5f80fd5b6001600160a01b031690565b3461016e575f36600319011261016e576005546040516001600160a01b039091168152602090f35b6001600160a01b0381160361016e57565b600435906101c4826101a6565b565b602435906101c4826101a6565b604435906101c4826101a6565b606435906101c4826101a6565b608435906101c4826101a6565b3461016e57606036600319011261016e57600435610217816101a6565b60243590610224826101a6565b6044355f51602061329b5f395f51905f52549267ffffffffffffffff61025a60ff604087901c16159567ffffffffffffffff1690565b1680159081610375575b600114908161036b575b159081610362575b50610353576102ba92846102b1600167ffffffffffffffff195f51602061329b5f395f51905f525416175f51602061329b5f395f51905f5255565b6103195761108a565b6102c057005b6102ea60ff60401b195f51602061329b5f395f51905f5254165f51602061329b5f395f51905f5255565b604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1005b61034e6801000000000000000060ff60401b195f51602061329b5f395f51905f525416175f51602061329b5f395f51905f5255565b61108a565b63f92ee8a960e01b5f5260045ffd5b9050155f610276565b303b15915061026e565b859150610264565b3461016e575f36600319011261016e576020600154604051908152f35b3461016e57604036600319011261016e576004356103b7816101a6565b602435906103c3611d22565b600280546001600160a01b0319166001600160a01b03929092169190911790555f55005b3461016e57602036600319011261016e5760043561041060018060a01b0360055416331461110f565b61041c8147101561115a565b5f80808084335af161042c6111b9565b501561046d576040805191825242602083015233917ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b56891819081015b0390a2005b60405162461bcd60e51b815260206004820152601860248201527f5377617047656d733a207769746864726177206572726f7200000000000000006044820152606490fd5b3461016e57604036600319011261016e576004356104cf816101a6565b602435906104dc826101a6565b6104e4611d22565b600580546001600160a01b039283166001600160a01b03199182161790915560068054939092169216919091179055005b60a036600319011261016e5760043561052d816101a6565b602435610539816101a6565b6044356064359160843561054c816101a6565b610554611d55565b6001600160a01b03811692858161056c8615156111e8565b61057781151561123e565b5f916001600160a01b0316156109aa575b501561099a57610599913087611f62565b6001600160a01b0316905f908215610991575b8115610941576003546105c990610172906001600160a01b031681565b6040516370a0823160e01b815230600482015290602090829060249082905afa908115610813575f91610922575b50945b604051630dfe168160e01b8152602081600481865afa908115610813575f916108f3575b50604051630240bc6b60e21b815291606083600481875afa928315610813575f905f946108b4575b506001600160a01b03918216929091168214926001600160701b03908116911683156108ae575b6040516370a0823160e01b81526001600160a01b038616600482015292602090849060249082905afa801561081357816106b2916106b7955f91610818575b50612117565b61218e565b90156108a7575f90915b83156108a05730905b6106d26113e6565b93813b1561016e575f80946106fd6040519788968795869463022c0d9f60e01b865260048601611457565b03925af180156108135761088c575b5015610847575060035461072a90610172906001600160a01b031681565b6040516370a0823160e01b81523060048201529092602082602481875afa80156108135761075e925f916108185750612117565b90823b1561016e57604051632e1a7d4d60e01b815260048101839052925f908490602490829084905af1908115610813576107f5936107cf926107f9575b506107c75f8080806107b66107b089611dd9565b89611311565b335af16107c16111b9565b50611482565b8210156114da565b6107e560015f51602061327b5f395f51905f5255565b6040519081529081906020820190565b0390f35b806108075f61080d93610a49565b80610164565b5f61079c565b611379565b61083a915060203d602011610840575b6108328183610a49565b81019061136a565b5f6106ac565b503d610828565b6040516370a0823160e01b815233600482015290602090829060249082905afa908115610813576107f5936107cf92610886925f916108185750612117565b916107c7565b806108075f61089a93610a49565b5f61070c565b33906106ca565b5f916106c1565b9061066d565b6001600160701b0394508491506108e29060603d6060116108ec575b6108da8183610a49565b8101906113b0565b5094909150610646565b503d6108d0565b610915915060203d60201161091b575b61090d8183610a49565b810190611384565b5f61061e565b503d610903565b61093b915060203d602011610840576108328183610a49565b5f6105f7565b6040516370a0823160e01b8152336004820152602081602481875afa908115610813575f91610972575b50946105fa565b61098b915060203d602011610840576108328183610a49565b5f61096b565b600191506105ac565b6109a5913387611f62565b610599565b965050506109ba8534101561128a565b6003546001906109ee906001600160a01b0316966109d88134611311565b806109f5575b506109e881611dd9565b90611311565b905f610588565b5f808080610a0e94335af1610a086111b9565b5061131e565b5f6109de565b634e487b7160e01b5f52604160045260245ffd5b6060810190811067ffffffffffffffff821117610a4457604052565b610a14565b90601f8019910116810190811067ffffffffffffffff821117610a4457604052565b604051906101c461012083610a49565b604051906101c4604083610a49565b61010435906101c4826101a6565b61012036600319011261016e576107f56107e5610ab3610a6b565b610abb6101b7565b8152610ac56101c6565b6020820152610ad26101d3565b6040820152610adf6101e0565b6060820152610aec6101ed565b608082015260a43560a082015260c43560c082015260e43560e0820152610b11610a8a565b610100820152611543565b3461016e575f36600319011261016e57610b34611d22565b5f51602061325b5f395f51905f5280546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461016e575f36600319011261016e575f51602061325b5f395f51905f52546040516001600160a01b039091168152602090f35b3461016e575f36600319011261016e5760205f54604051908152f35b3461016e575f36600319011261016e576003546040516001600160a01b039091168152602090f35b3461016e575f36600319011261016e576002546040516001600160a01b039091168152602090f35b5f36600319011261016e57610c4360018060a01b0360055416331461110f565b3415610c84576040805134815242602082015233917f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15919081908101610468565b606460405162461bcd60e51b815260206004820152602060248201527f5377617047656d733a206465706f7369742076616c7565206d757374203e20306044820152fd5b67ffffffffffffffff8111610a4457601f01601f191660200190565b81601f8201121561016e57803590610cfb82610cc8565b92610d096040519485610a49565b8284526020838301011161016e57815f926020809301838601378301015290565b3461016e57608036600319011261016e5760043567ffffffffffffffff811161016e57610d5b903690600401610ce4565b60443590610e03610ddd60643592610d758442111561192c565b610d818547101561115a565b335f908152600760205260409020610d9f9085906001015410611af6565b610dcb610dc6610dae3361246f565b610db78861251b565b610dc08861251b565b91611b6f565b612671565b610dd86024358214611ba2565b6126c3565b600654610df2906001600160a01b0316610172565b6001600160a01b0390911614611bee565b610e1c5f80808086335af1610e166111b9565b50611c44565b335f908152600760205260409020610e35838254611ca4565b9055335f908152600760205260409020600101556040805191825242602083015233917f43c29ce89b19e1d3997d4081a8e1b18bd447da47b5766e3ab1dc6b951268a12a9181908101610468565b3461016e575f36600319011261016e576006546040516001600160a01b039091168152602090f35b90606060031983011261016e57600435916024359160443567ffffffffffffffff811161016e578260238201121561016e5780600401359267ffffffffffffffff841161016e576024848301011161016e576024019190565b3461016e57610f5f610f3a610f1836610eab565b91949293905f851392838015611000575b610f32906126d9565b8101906126e0565b90610f458251612928565b6004549197929591889087906001600160a01b0316612ad9565b9115610fea57506001600160a01b03858116908416105b15610f9657506020015161001893506001600160a01b03165b3391611f62565b91509192610fa8835160429051101590565b15610fce575061001892610fbc8351612f4b565b835233916001600160a01b0316612ff4565b60209290920151610018939291506001600160a01b0316610f8f565b93506001600160a01b0383811690861610610f76565b505f8713610f29565b3461016e57602036600319011261016e57610018600435611029816101a6565b611031611d22565b611cb1565b3461016e57602036600319011261016e57600435611053816101a6565b60018060a01b03165f52600760205260405f2060018154910154906107f56040519283928360209093929193604081019481520152565b9161109361275a565b61109b61275a565b6110a433611cb1565b6110ac61275a565b6110b461275a565b60015f51602061327b5f395f51905f52555f5561271060015560018060a01b03166bffffffffffffffffffffffff60a01b600254161760025560018060a01b03166bffffffffffffffffffffffff60a01b6003541617600355565b1561111657565b606460405162461bcd60e51b815260206004820152602060248201527f5377617047656d733a20796f7520617265206e6f7420617574686f72697a65646044820152fd5b1561116157565b60405162461bcd60e51b815260206004820152602a60248201527f5377617047656d733a20696e73756666696369656e742062616c616e636520746044820152696f20776974686472617760b01b6064820152608490fd5b3d156111e3573d906111ca82610cc8565b916111d86040519384610a49565b82523d5f602084013e565b606090565b156111ef57565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20696e76616c69642076322070616972206164647265736044820152607360f81b6064820152608490fd5b1561124557565b60405162461bcd60e51b815260206004820152601f60248201527f5377617047656d733a207377617020616d6f757420696e206973207a65726f006044820152606490fd5b1561129157565b60405162461bcd60e51b815260206004820152602960248201527f5377617047656d733a20616d6f756e7420696e20616e642074782076616c7565604482015268040dad2e6dac2e8c6d60bb1b6064820152608490fd5b634e487b7160e01b5f52601160045260245ffd5b6103e803906103e8821161130c57565b6112e8565b9190820391821161130c57565b1561132557565b60405162461bcd60e51b815260206004820152601a60248201527f5377617047656d733a20726566756e6420455448206572726f720000000000006044820152606490fd5b9081602091031261016e575190565b6040513d5f823e3d90fd5b9081602091031261016e5751611399816101a6565b90565b51906001600160701b038216820361016e57565b9081606091031261016e576113c48161139c565b9160406113d36020840161139c565b92015163ffffffff8116810361016e5790565b604051906113f5602083610a49565b5f808352366020840137565b9061140b82610cc8565b6114186040519182610a49565b8281528092611429601f1991610cc8565b0190602036910137565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b909260809261139995948352602083015260018060a01b031660408201528160608201520190611433565b1561148957565b60405162461bcd60e51b8152602060048201526024808201527f5377617047656d733a2073656e6420455448206f757420746f20757365722065604482015263393937b960e11b6064820152608490fd5b156114e157565b60405162461bcd60e51b815260206004820152603460248201527f5377617047656d733a20616d6f756e74206f7574206c657373207468616e206d6044820152731a5b9a5b585b081bdd5d1c1d5d08185b5bdd5b9d60621b6064820152608490fd5b61154b611d55565b61155b60a082015142111561192c565b8051600480546001600160a01b0319166001600160a01b0390921691909117905560c0810161158c81511515611992565b6040820180516003549193916001600160a01b039081169116818114908115611923575b506118e1575b5060608101805160035491945f949290916001600160a01b0391821691168181149081156118d8575b506118c2575b5083946004939415611899575b83546001600160a01b0316732e08f5ff603e4343864b14599caedb19918bdcae19016118345760208581015161163290610172906001600160a01b031681565b6040516334324e9f60e21b815295869182905afa801561081357611714945f91611805575b50925b60208601516001600160a01b031690519087156117ed576116fe5f935b6101008901516116f0906116ae906116a0906001600160a01b031698516001600160a01b031690565b92516001600160a01b031690565b604051606093841b6001600160601b0319908116602083015260e89a909a1b6001600160e81b0319166034820152921b9097166037820152958690604b820190565b03601f198101875286610a49565b611706610a7b565b94855233602086015261232c565b9161172560e0830151841015611a54565b611742575b50906101c460015f51602061327b5f395f51905f5255565b60035461175990610172906001600160a01b031681565b90813b1561016e57604051632e1a7d4d60e01b815260048101849052915f908390602490829084905af1908115610813575f808093926117d39582946117d9575b506117c26117bb60806117ac8a611dd9565b9301516001600160a01b031690565b9188611311565b905af16117cd6111b9565b50611aaa565b5f61172a565b80610807846117e793610a49565b5f61179a565b60808701516116fe906001600160a01b031693611677565b611827915060203d60201161182d575b61181f8183610a49565b810190611a39565b5f611657565b503d611815565b60208581015161184e90610172906001600160a01b031681565b60405163ddca3f4360e01b815295869182905afa801561081357611714945f9161187a575b509261165a565b611893915060203d60201161182d5761181f8183610a49565b5f611873565b81516118bb906118b4906001600160a01b0316855190611e79565b8451611311565b83526115f2565b6001600160a01b031685526001935060046115e5565b9050155f6115df565b6001600160a01b031683526118f982513410156119de565b611904825134611311565b80156115b6575f80808061191d94335af1610a086111b9565b5f6115b6565b9050155f6115b0565b1561193357565b60405162461bcd60e51b815260206004820152603160248201527f5377617047656d733a205472616e73616374696f6e20746f6f206f6c642c20646044820152701958591b1a5b99481d1bdbc81cdb585b1b607a1b6064820152608490fd5b1561199957565b60405162461bcd60e51b815260206004820152601b60248201527f5377617047656d733a20616d6f756e7420696e206973207a65726f00000000006044820152606490fd5b156119e557565b60405162461bcd60e51b815260206004820152602660248201527f5377617047656d733a20616d6f756e7420696e20616e642076616c7565206d696044820152650e6dac2e8c6d60d31b6064820152608490fd5b9081602091031261016e575162ffffff8116810361016e5790565b15611a5b57565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20696e73756666696369656e74206f757420616d6f756e6044820152601d60fa1b6064820152608490fd5b15611ab157565b60405162461bcd60e51b815260206004820152601c60248201527f5377617047656d733a2073656e6420455448206f7574206572726f72000000006044820152606490fd5b15611afd57565b60405162461bcd60e51b815260206004820152603260248201527f5377617047656d733a206c61737420646561646c696e65206d75737420736d616044820152716c6c6572207468616e20646561646c696e6560701b6064820152608490fd5b805191908290602001825e015f815290565b611b94611b8e9493611b8e6101c4946040519788956020870190611b5d565b90611b5d565b03601f198101845283610a49565b15611ba957565b60405162461bcd60e51b815260206004820152601e60248201527f5377617047656d733a20696e76616c6964206d657373616765206861736800006044820152606490fd5b15611bf557565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20636c61696d207369676e657220697320696e76616c696044820152601960fa1b6064820152608490fd5b15611c4b57565b60405162461bcd60e51b815260206004820152601560248201527429bbb0b823b2b6b99d1031b630b4b69032b93937b960591b6044820152606490fd5b906001820180921161130c57565b90601f820180921161130c57565b9190820180921161130c57565b6001600160a01b03168015611d0f575f51602061325b5f395f51905f5280546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b631e4fbdf760e01b5f525f60045260245ffd5b5f51602061325b5f395f51905f52546001600160a01b03163303611d4257565b63118cdaa760e01b5f523360045260245ffd5b60025f51602061327b5f395f51905f525414611d7e5760025f51602061327b5f395f51905f5255565b633ee5aeb560e01b5f5260045ffd5b15611d9457565b60405162461bcd60e51b815260206004820152601860248201527f5377617047656d733a2074616b6520666565206572726f7200000000000000006044820152606490fd5b611de8611df1915f54906127e3565b6001549061281f565b8047115f14611e5b57611e1d5f8080808560025460018060a01b03165af1611e176111b9565b50611d8d565b6040805182815242602082015233915f917f205442d60b70af1203d43cab62352c3b69b94f091be32fe683198057282b5c9291819081015b0390a390565b600254611e749082906001600160a01b0316335f612843565b611e1d565b90611de8611e89915f54906127e3565b906001600160a01b031680158015611f2d575b80611f24575b15611f0657611eca5f80808086611ec060025460018060a01b031690565b5af1611e176111b9565b604080518381524260208201523392917f205442d60b70af1203d43cab62352c3b69b94f091be32fe683198057282b5c92919081908101611e55565b600254611f1f9083906001600160a01b03163384612843565b611eca565b50814711611ea2565b50600354611f43906001600160a01b0316610172565b8114611e9c565b9081602091031261016e5751801515810361016e5790565b60035490929190611f7b906001600160a01b0316610172565b6001600160a01b039093169283148061210d575b1561207f5750600354909150611faf90610172906001600160a01b031681565b803b1561016e575f8391600460405180968193630d0e30db60e41b83525af19182156108135761202f9360209361206b575b50600354611ff990610172906001600160a01b031681565b60405163a9059cbb60e01b81526001600160a01b03909216600483015260248201929092529283919082905f9082906044820190565b03925af18015610813576120405750565b6120619060203d602011612064575b6120598183610a49565b810190611f4a565b50565b503d61204f565b806108075f61207993610a49565b5f611fe1565b6001600160a01b03811630036120c6575060405163a9059cbb60e01b81526001600160a01b03909116600482015260248101929092526020908290815f816044810161202f565b6040516323b872dd60e01b81526001600160a01b039182166004820152911660248201526044810192909252602090829060649082905f905af18015610813576120405750565b5083471015611f8f565b90810390811161130c5790565b1561212b57565b60405162461bcd60e51b815260206004820152601d60248201527f5377617047656d733a20563220464545204558434545445320313030300000006044820152606490fd5b811561217a570490565b634e487b7160e01b5f52601260045260245ffd5b8015612244578115158061223b575b156121e557611399926121da6121d46121cd6121df946121bd6001612124565b6121c7600a6112fc565b906127e3565b92836127e3565b93612785565b6128d8565b90612170565b60405162461bcd60e51b815260206004820152602860248201527f556e697377617056324c6962726172793a20494e53554646494349454e545f4c604482015267495155494449545960c01b6064820152608490fd5b5082151561219d565b60405162461bcd60e51b815260206004820152602b60248201527f556e697377617056324c6962726172793a20494e53554646494349454e545f4960448201526a1394155517d05353d5539560aa1b6064820152608490fd5b6020815260406122b883518260208501526060840190611433565b6020909301516001600160a01b031691015290565b919082604091031261016e576020825192015190565b6001600160a01b039182168152911515602083015260408201929092529116606082015260a06080820181905261139992910190611433565b600160ff1b811461130c575f0390565b61236a94936040939092906001600160a01b03811615612468575b5f906123538751612928565b506001600160a01b039081169116109788936129a8565b946001600160a01b0381161583146124585750828214612435576123ce6123a46123b26401000276a45b995b89519283916020830161229d565b03601f198101835282610a49565b8751630251596160e31b815298899788968795600487016122e3565b03926001600160a01b03165af190811561081357611399925f915f93612402575b50156123fb575061231c565b905061231c565b909250612427915060403d60401161242e575b61241f8183610a49565b8101906122cd565b915f6123ef565b503d612415565b6123ce6123a46123b273fffd8963efd1fc6a506488495d951d5263988d25612394565b6123a46123b26123ce9299612396565b5030612347565b6001600160a01b031680612483602a611401565b91603061248f846129cb565b53607861249b846129d8565b536124a66028611c88565b600181116124ce57506124b7575090565b63e22e27eb60e01b5f52600452601460245260445ffd5b90600f81166010811015612516576125119161250b916f181899199a1a9b1b9c1cb0b131b232b360811b901a61250485886129e8565b5360041c90565b916129f9565b6124a6565b6129b7565b805f9172184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b82101561264e575b806d04ee2d6d415b85acef8100000000600a921015612632575b662386f26fc1000081101561261d575b6305f5e10081101561260b575b6127108110156125fb575b60648110156125ec575b10156125e1575b6125cc60216125a160018501611401565b938401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b600a82061a8353600a900490565b80156125dc576125cc90916125a6565b505090565b600190910190612590565b60029060649004930192612589565b600490612710900493019261257f565b6008906305f5e1009004930192612574565b601090662386f26fc100009004930192612567565b6020906d04ee2d6d415b85acef81000000009004930192612557565b506040915072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b810461253d565b6123a46126bd612681835161251b565b92604051928391611b8e60208401967f19457468657265756d205369676e6564204d6573736167653a0a0000000000008852603a850190611b5d565b51902090565b611399916126d091612a05565b90929192612a5d565b1561016e57565b60208183031261016e5780359067ffffffffffffffff821161016e57019060408282031261016e57604051916040830183811067ffffffffffffffff821117610a4457604052803567ffffffffffffffff811161016e57602092612745918301610ce4565b83520135612752816101a6565b602082015290565b60ff5f51602061329b5f395f51905f525460401c161561277657565b631afcd79f60e31b5f5260045ffd5b906103e88202918083046103e8148115171561130c576103e88304036127a757565b60405162461bcd60e51b815260206004820152601460248201527364732d6d6174682d6d756c2d6f766572666c6f7760601b6044820152606490fd5b5f929180159182156127f9575b5050156127a757565b8181029450915081158285048214171561130c576128179084612170565b145f806127f0565b90801561282f5761139991612170565b634e487b7160e01b5f52600160045260245ffd5b6040516323b872dd60e01b60208083019182526001600160a01b0394851660248401529490931660448201526064810194909452925f919061288881608481016123a4565b519082855af115611379575f513d6128cf57506001600160a01b0381163b155b6128af5750565b635274afe760e01b5f9081526001600160a01b0391909116600452602490fd5b600114156128a8565b919082019182811161130c5782106128ec57565b60405162461bcd60e51b815260206004820152601460248201527364732d6d6174682d6164642d6f766572666c6f7760601b6044820152606490fd5b90612937601483511015613117565b602082015160601c91601781511061296c57601781015190602b81612963601792602094511015613117565b01015160601c91565b60405162461bcd60e51b8152602060048201526014602482015273746f55696e7432345f6f75744f66426f756e647360601b6044820152606490fd5b600160ff1b81101561016e5790565b634e487b7160e01b5f52603260045260245ffd5b8051156125165760200190565b8051600110156125165760210190565b908151811015612516570160200190565b801561130c575f190190565b8151919060418303612a3557612a2e9250602082015190606060408401519301515f1a9061315b565b9192909190565b50505f9160029190565b60041115612a4957565b634e487b7160e01b5f52602160045260245ffd5b612a6681612a3f565b80612a6f575050565b612a7881612a3f565b60018103612a8f5763f645eedf60e01b5f5260045ffd5b612a9881612a3f565b60028103612ab3575063fce698f760e01b5f5260045260245ffd5b80612abf600392612a3f565b14612ac75750565b6335e2f38360e21b5f5260045260245ffd5b91929083815f60408051612aec81610a28565b8281526020810183905201526001600160a01b0382811690821611612f40575b505060405190612b1b82610a28565b6001600160a01b0390811680835294166020820181815262ffffff93909316604083018181529395612b4e8382106126d9565b6001600160a01b0386169273b1c0fa0b789320044a6f623cfe5ebda9562602e38403612c6f5750505050612c5b936123a492612be6612bb4612baa612b9c612c49965160018060a01b031690565b94516001600160a01b031690565b925162ffffff1690565b604080516001600160a01b0395861660208201908152959094169084015262ffffff16606083015281608081016123a4565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527fe3572921be1688dba92df30c6781b8770499ff274d20ae9b325f4242634774fb60558201529182906075820190565b519020805f526001600160a01b031690565b611399336001600160a01b038316146126d9565b7340059a6f242c3de0e639693973004921b04d96ad8403612d155750505050612c5b936123a492612cb2612bb4612baa612b9c612c49965160018060a01b031690565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527f37dc715da5db6e8a4a7c5306fa01aad3ce7450a2013b27b10119c0e85dcf602b60558201529182906075820190565b939693732e08f5ff603e4343864b14599caedb19918bdcaf8403612e165750505090602060049493926040519586809263cefa779960e01b82525afa91821561081357612c5b95610172955f94612de5575b5051612d8390612bb490612baa906001600160a01b0316612b9c565b519020906040519260388401526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c82012060788201526055604360018060a01b039201201690565b612d83919450612baa612b9c612e0c612bb49360203d60201161091b5761090d8183610a49565b9693505050612d67565b612c5b9792959373ff7b3e8c00e57ea31477c32a5b52a58eea47b07203612ec2575050516123a49350612c49929190612e5f90612bb490612baa906001600160a01b0316612b9c565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527f7ef2b01a451cbf890790278981756372e549443802ece149dc0b592cbc114ee960558201529182906075820190565b91509150612c499250612edd612bb46123a49562ffffff1690565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b5460558201529182906075820190565b945090505f80612b0c565b601781518181039080821161130c578290612f7083612f6981611c96565b10156131dd565b612f7e82612f698582611ca4565b612f948551612f8d8585611ca4565b111561321a565b03612fac575050506040515f81526020810160405290565b60405192601f821692831560051b80858701019484860193010101905b808410612fe15750508252601f01601f191660405290565b9092602080918551815201930190612fc9565b92939290916001600160a01b03811615613110575b6040906130168651612928565b506001600160a01b0391821691161092835f613039613034886129a8565b61231c565b938282146130ec5761307b6123a461305f6401000276a49c89519283916020830161229d565b8751630251596160e31b81529b8c9788968795600487016122e3565b03926001600160a01b03165af1908115610813575f945f926130c8575b50156130b457906130ab6101c49261231c565b935b93146126d9565b92906130c26101c49261231c565b936130ad565b9094506130e4915060403d60401161242e5761241f8183610a49565b90935f613098565b61307b6123a461305f73fffd8963efd1fc6a506488495d951d5263988d259c612396565b5030613009565b1561311e57565b60405162461bcd60e51b8152602060048201526015602482015274746f416464726573735f6f75744f66426f756e647360581b6044820152606490fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084116131d2579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15610813575f516001600160a01b038116156131c857905f905f90565b505f906001905f90565b5050505f9160039190565b156131e457565b60405162461bcd60e51b815260206004820152600e60248201526d736c6963655f6f766572666c6f7760901b6044820152606490fd5b1561322157565b60405162461bcd60e51b8152602060048201526011602482015270736c6963655f6f75744f66426f756e647360781b6044820152606490fdfe9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993009b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00a26469706673582212201160b84e5411f95e5534395bcfd68a7ab4154067c6ae60c56896417c28e938d664736f6c634300081e0033
Deployed Bytecode
0x6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80630a2347701461015f5780631794bb3c1461015a578063180b0d7e1461015557806318a74064146101505780632e1a7d4d1461014b5780633c1839e7146101465780635b9e90061461014157806362583a031461013c578063715018a6146101375780638da5cb5b14610132578063978bbdb91461012d578063ad5c464814610128578063c415b95c14610123578063d0e30db01461011e578063d540999514610119578063daaaa5cc14610114578063e81f56f41461010a578063f2fde38b1461010f578063fa461e331461010a578063fa85398b1461010a5763fe08b7800361000e57611036565b610f04565b611009565b610e83565b610d2a565b610c23565b610bfb565b610bd3565b610bb7565b610b83565b610b1c565b610a98565b610515565b6104b2565b6103e7565b61039a565b61037d565b6101fa565b61017e565b5f91031261016e57565b5f80fd5b6001600160a01b031690565b3461016e575f36600319011261016e576005546040516001600160a01b039091168152602090f35b6001600160a01b0381160361016e57565b600435906101c4826101a6565b565b602435906101c4826101a6565b604435906101c4826101a6565b606435906101c4826101a6565b608435906101c4826101a6565b3461016e57606036600319011261016e57600435610217816101a6565b60243590610224826101a6565b6044355f51602061329b5f395f51905f52549267ffffffffffffffff61025a60ff604087901c16159567ffffffffffffffff1690565b1680159081610375575b600114908161036b575b159081610362575b50610353576102ba92846102b1600167ffffffffffffffff195f51602061329b5f395f51905f525416175f51602061329b5f395f51905f5255565b6103195761108a565b6102c057005b6102ea60ff60401b195f51602061329b5f395f51905f5254165f51602061329b5f395f51905f5255565b604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1005b61034e6801000000000000000060ff60401b195f51602061329b5f395f51905f525416175f51602061329b5f395f51905f5255565b61108a565b63f92ee8a960e01b5f5260045ffd5b9050155f610276565b303b15915061026e565b859150610264565b3461016e575f36600319011261016e576020600154604051908152f35b3461016e57604036600319011261016e576004356103b7816101a6565b602435906103c3611d22565b600280546001600160a01b0319166001600160a01b03929092169190911790555f55005b3461016e57602036600319011261016e5760043561041060018060a01b0360055416331461110f565b61041c8147101561115a565b5f80808084335af161042c6111b9565b501561046d576040805191825242602083015233917ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b56891819081015b0390a2005b60405162461bcd60e51b815260206004820152601860248201527f5377617047656d733a207769746864726177206572726f7200000000000000006044820152606490fd5b3461016e57604036600319011261016e576004356104cf816101a6565b602435906104dc826101a6565b6104e4611d22565b600580546001600160a01b039283166001600160a01b03199182161790915560068054939092169216919091179055005b60a036600319011261016e5760043561052d816101a6565b602435610539816101a6565b6044356064359160843561054c816101a6565b610554611d55565b6001600160a01b03811692858161056c8615156111e8565b61057781151561123e565b5f916001600160a01b0316156109aa575b501561099a57610599913087611f62565b6001600160a01b0316905f908215610991575b8115610941576003546105c990610172906001600160a01b031681565b6040516370a0823160e01b815230600482015290602090829060249082905afa908115610813575f91610922575b50945b604051630dfe168160e01b8152602081600481865afa908115610813575f916108f3575b50604051630240bc6b60e21b815291606083600481875afa928315610813575f905f946108b4575b506001600160a01b03918216929091168214926001600160701b03908116911683156108ae575b6040516370a0823160e01b81526001600160a01b038616600482015292602090849060249082905afa801561081357816106b2916106b7955f91610818575b50612117565b61218e565b90156108a7575f90915b83156108a05730905b6106d26113e6565b93813b1561016e575f80946106fd6040519788968795869463022c0d9f60e01b865260048601611457565b03925af180156108135761088c575b5015610847575060035461072a90610172906001600160a01b031681565b6040516370a0823160e01b81523060048201529092602082602481875afa80156108135761075e925f916108185750612117565b90823b1561016e57604051632e1a7d4d60e01b815260048101839052925f908490602490829084905af1908115610813576107f5936107cf926107f9575b506107c75f8080806107b66107b089611dd9565b89611311565b335af16107c16111b9565b50611482565b8210156114da565b6107e560015f51602061327b5f395f51905f5255565b6040519081529081906020820190565b0390f35b806108075f61080d93610a49565b80610164565b5f61079c565b611379565b61083a915060203d602011610840575b6108328183610a49565b81019061136a565b5f6106ac565b503d610828565b6040516370a0823160e01b815233600482015290602090829060249082905afa908115610813576107f5936107cf92610886925f916108185750612117565b916107c7565b806108075f61089a93610a49565b5f61070c565b33906106ca565b5f916106c1565b9061066d565b6001600160701b0394508491506108e29060603d6060116108ec575b6108da8183610a49565b8101906113b0565b5094909150610646565b503d6108d0565b610915915060203d60201161091b575b61090d8183610a49565b810190611384565b5f61061e565b503d610903565b61093b915060203d602011610840576108328183610a49565b5f6105f7565b6040516370a0823160e01b8152336004820152602081602481875afa908115610813575f91610972575b50946105fa565b61098b915060203d602011610840576108328183610a49565b5f61096b565b600191506105ac565b6109a5913387611f62565b610599565b965050506109ba8534101561128a565b6003546001906109ee906001600160a01b0316966109d88134611311565b806109f5575b506109e881611dd9565b90611311565b905f610588565b5f808080610a0e94335af1610a086111b9565b5061131e565b5f6109de565b634e487b7160e01b5f52604160045260245ffd5b6060810190811067ffffffffffffffff821117610a4457604052565b610a14565b90601f8019910116810190811067ffffffffffffffff821117610a4457604052565b604051906101c461012083610a49565b604051906101c4604083610a49565b61010435906101c4826101a6565b61012036600319011261016e576107f56107e5610ab3610a6b565b610abb6101b7565b8152610ac56101c6565b6020820152610ad26101d3565b6040820152610adf6101e0565b6060820152610aec6101ed565b608082015260a43560a082015260c43560c082015260e43560e0820152610b11610a8a565b610100820152611543565b3461016e575f36600319011261016e57610b34611d22565b5f51602061325b5f395f51905f5280546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461016e575f36600319011261016e575f51602061325b5f395f51905f52546040516001600160a01b039091168152602090f35b3461016e575f36600319011261016e5760205f54604051908152f35b3461016e575f36600319011261016e576003546040516001600160a01b039091168152602090f35b3461016e575f36600319011261016e576002546040516001600160a01b039091168152602090f35b5f36600319011261016e57610c4360018060a01b0360055416331461110f565b3415610c84576040805134815242602082015233917f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a15919081908101610468565b606460405162461bcd60e51b815260206004820152602060248201527f5377617047656d733a206465706f7369742076616c7565206d757374203e20306044820152fd5b67ffffffffffffffff8111610a4457601f01601f191660200190565b81601f8201121561016e57803590610cfb82610cc8565b92610d096040519485610a49565b8284526020838301011161016e57815f926020809301838601378301015290565b3461016e57608036600319011261016e5760043567ffffffffffffffff811161016e57610d5b903690600401610ce4565b60443590610e03610ddd60643592610d758442111561192c565b610d818547101561115a565b335f908152600760205260409020610d9f9085906001015410611af6565b610dcb610dc6610dae3361246f565b610db78861251b565b610dc08861251b565b91611b6f565b612671565b610dd86024358214611ba2565b6126c3565b600654610df2906001600160a01b0316610172565b6001600160a01b0390911614611bee565b610e1c5f80808086335af1610e166111b9565b50611c44565b335f908152600760205260409020610e35838254611ca4565b9055335f908152600760205260409020600101556040805191825242602083015233917f43c29ce89b19e1d3997d4081a8e1b18bd447da47b5766e3ab1dc6b951268a12a9181908101610468565b3461016e575f36600319011261016e576006546040516001600160a01b039091168152602090f35b90606060031983011261016e57600435916024359160443567ffffffffffffffff811161016e578260238201121561016e5780600401359267ffffffffffffffff841161016e576024848301011161016e576024019190565b3461016e57610f5f610f3a610f1836610eab565b91949293905f851392838015611000575b610f32906126d9565b8101906126e0565b90610f458251612928565b6004549197929591889087906001600160a01b0316612ad9565b9115610fea57506001600160a01b03858116908416105b15610f9657506020015161001893506001600160a01b03165b3391611f62565b91509192610fa8835160429051101590565b15610fce575061001892610fbc8351612f4b565b835233916001600160a01b0316612ff4565b60209290920151610018939291506001600160a01b0316610f8f565b93506001600160a01b0383811690861610610f76565b505f8713610f29565b3461016e57602036600319011261016e57610018600435611029816101a6565b611031611d22565b611cb1565b3461016e57602036600319011261016e57600435611053816101a6565b60018060a01b03165f52600760205260405f2060018154910154906107f56040519283928360209093929193604081019481520152565b9161109361275a565b61109b61275a565b6110a433611cb1565b6110ac61275a565b6110b461275a565b60015f51602061327b5f395f51905f52555f5561271060015560018060a01b03166bffffffffffffffffffffffff60a01b600254161760025560018060a01b03166bffffffffffffffffffffffff60a01b6003541617600355565b1561111657565b606460405162461bcd60e51b815260206004820152602060248201527f5377617047656d733a20796f7520617265206e6f7420617574686f72697a65646044820152fd5b1561116157565b60405162461bcd60e51b815260206004820152602a60248201527f5377617047656d733a20696e73756666696369656e742062616c616e636520746044820152696f20776974686472617760b01b6064820152608490fd5b3d156111e3573d906111ca82610cc8565b916111d86040519384610a49565b82523d5f602084013e565b606090565b156111ef57565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20696e76616c69642076322070616972206164647265736044820152607360f81b6064820152608490fd5b1561124557565b60405162461bcd60e51b815260206004820152601f60248201527f5377617047656d733a207377617020616d6f757420696e206973207a65726f006044820152606490fd5b1561129157565b60405162461bcd60e51b815260206004820152602960248201527f5377617047656d733a20616d6f756e7420696e20616e642074782076616c7565604482015268040dad2e6dac2e8c6d60bb1b6064820152608490fd5b634e487b7160e01b5f52601160045260245ffd5b6103e803906103e8821161130c57565b6112e8565b9190820391821161130c57565b1561132557565b60405162461bcd60e51b815260206004820152601a60248201527f5377617047656d733a20726566756e6420455448206572726f720000000000006044820152606490fd5b9081602091031261016e575190565b6040513d5f823e3d90fd5b9081602091031261016e5751611399816101a6565b90565b51906001600160701b038216820361016e57565b9081606091031261016e576113c48161139c565b9160406113d36020840161139c565b92015163ffffffff8116810361016e5790565b604051906113f5602083610a49565b5f808352366020840137565b9061140b82610cc8565b6114186040519182610a49565b8281528092611429601f1991610cc8565b0190602036910137565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b909260809261139995948352602083015260018060a01b031660408201528160608201520190611433565b1561148957565b60405162461bcd60e51b8152602060048201526024808201527f5377617047656d733a2073656e6420455448206f757420746f20757365722065604482015263393937b960e11b6064820152608490fd5b156114e157565b60405162461bcd60e51b815260206004820152603460248201527f5377617047656d733a20616d6f756e74206f7574206c657373207468616e206d6044820152731a5b9a5b585b081bdd5d1c1d5d08185b5bdd5b9d60621b6064820152608490fd5b61154b611d55565b61155b60a082015142111561192c565b8051600480546001600160a01b0319166001600160a01b0390921691909117905560c0810161158c81511515611992565b6040820180516003549193916001600160a01b039081169116818114908115611923575b506118e1575b5060608101805160035491945f949290916001600160a01b0391821691168181149081156118d8575b506118c2575b5083946004939415611899575b83546001600160a01b0316732e08f5ff603e4343864b14599caedb19918bdcae19016118345760208581015161163290610172906001600160a01b031681565b6040516334324e9f60e21b815295869182905afa801561081357611714945f91611805575b50925b60208601516001600160a01b031690519087156117ed576116fe5f935b6101008901516116f0906116ae906116a0906001600160a01b031698516001600160a01b031690565b92516001600160a01b031690565b604051606093841b6001600160601b0319908116602083015260e89a909a1b6001600160e81b0319166034820152921b9097166037820152958690604b820190565b03601f198101875286610a49565b611706610a7b565b94855233602086015261232c565b9161172560e0830151841015611a54565b611742575b50906101c460015f51602061327b5f395f51905f5255565b60035461175990610172906001600160a01b031681565b90813b1561016e57604051632e1a7d4d60e01b815260048101849052915f908390602490829084905af1908115610813575f808093926117d39582946117d9575b506117c26117bb60806117ac8a611dd9565b9301516001600160a01b031690565b9188611311565b905af16117cd6111b9565b50611aaa565b5f61172a565b80610807846117e793610a49565b5f61179a565b60808701516116fe906001600160a01b031693611677565b611827915060203d60201161182d575b61181f8183610a49565b810190611a39565b5f611657565b503d611815565b60208581015161184e90610172906001600160a01b031681565b60405163ddca3f4360e01b815295869182905afa801561081357611714945f9161187a575b509261165a565b611893915060203d60201161182d5761181f8183610a49565b5f611873565b81516118bb906118b4906001600160a01b0316855190611e79565b8451611311565b83526115f2565b6001600160a01b031685526001935060046115e5565b9050155f6115df565b6001600160a01b031683526118f982513410156119de565b611904825134611311565b80156115b6575f80808061191d94335af1610a086111b9565b5f6115b6565b9050155f6115b0565b1561193357565b60405162461bcd60e51b815260206004820152603160248201527f5377617047656d733a205472616e73616374696f6e20746f6f206f6c642c20646044820152701958591b1a5b99481d1bdbc81cdb585b1b607a1b6064820152608490fd5b1561199957565b60405162461bcd60e51b815260206004820152601b60248201527f5377617047656d733a20616d6f756e7420696e206973207a65726f00000000006044820152606490fd5b156119e557565b60405162461bcd60e51b815260206004820152602660248201527f5377617047656d733a20616d6f756e7420696e20616e642076616c7565206d696044820152650e6dac2e8c6d60d31b6064820152608490fd5b9081602091031261016e575162ffffff8116810361016e5790565b15611a5b57565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20696e73756666696369656e74206f757420616d6f756e6044820152601d60fa1b6064820152608490fd5b15611ab157565b60405162461bcd60e51b815260206004820152601c60248201527f5377617047656d733a2073656e6420455448206f7574206572726f72000000006044820152606490fd5b15611afd57565b60405162461bcd60e51b815260206004820152603260248201527f5377617047656d733a206c61737420646561646c696e65206d75737420736d616044820152716c6c6572207468616e20646561646c696e6560701b6064820152608490fd5b805191908290602001825e015f815290565b611b94611b8e9493611b8e6101c4946040519788956020870190611b5d565b90611b5d565b03601f198101845283610a49565b15611ba957565b60405162461bcd60e51b815260206004820152601e60248201527f5377617047656d733a20696e76616c6964206d657373616765206861736800006044820152606490fd5b15611bf557565b60405162461bcd60e51b815260206004820152602160248201527f5377617047656d733a20636c61696d207369676e657220697320696e76616c696044820152601960fa1b6064820152608490fd5b15611c4b57565b60405162461bcd60e51b815260206004820152601560248201527429bbb0b823b2b6b99d1031b630b4b69032b93937b960591b6044820152606490fd5b906001820180921161130c57565b90601f820180921161130c57565b9190820180921161130c57565b6001600160a01b03168015611d0f575f51602061325b5f395f51905f5280546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b631e4fbdf760e01b5f525f60045260245ffd5b5f51602061325b5f395f51905f52546001600160a01b03163303611d4257565b63118cdaa760e01b5f523360045260245ffd5b60025f51602061327b5f395f51905f525414611d7e5760025f51602061327b5f395f51905f5255565b633ee5aeb560e01b5f5260045ffd5b15611d9457565b60405162461bcd60e51b815260206004820152601860248201527f5377617047656d733a2074616b6520666565206572726f7200000000000000006044820152606490fd5b611de8611df1915f54906127e3565b6001549061281f565b8047115f14611e5b57611e1d5f8080808560025460018060a01b03165af1611e176111b9565b50611d8d565b6040805182815242602082015233915f917f205442d60b70af1203d43cab62352c3b69b94f091be32fe683198057282b5c9291819081015b0390a390565b600254611e749082906001600160a01b0316335f612843565b611e1d565b90611de8611e89915f54906127e3565b906001600160a01b031680158015611f2d575b80611f24575b15611f0657611eca5f80808086611ec060025460018060a01b031690565b5af1611e176111b9565b604080518381524260208201523392917f205442d60b70af1203d43cab62352c3b69b94f091be32fe683198057282b5c92919081908101611e55565b600254611f1f9083906001600160a01b03163384612843565b611eca565b50814711611ea2565b50600354611f43906001600160a01b0316610172565b8114611e9c565b9081602091031261016e5751801515810361016e5790565b60035490929190611f7b906001600160a01b0316610172565b6001600160a01b039093169283148061210d575b1561207f5750600354909150611faf90610172906001600160a01b031681565b803b1561016e575f8391600460405180968193630d0e30db60e41b83525af19182156108135761202f9360209361206b575b50600354611ff990610172906001600160a01b031681565b60405163a9059cbb60e01b81526001600160a01b03909216600483015260248201929092529283919082905f9082906044820190565b03925af18015610813576120405750565b6120619060203d602011612064575b6120598183610a49565b810190611f4a565b50565b503d61204f565b806108075f61207993610a49565b5f611fe1565b6001600160a01b03811630036120c6575060405163a9059cbb60e01b81526001600160a01b03909116600482015260248101929092526020908290815f816044810161202f565b6040516323b872dd60e01b81526001600160a01b039182166004820152911660248201526044810192909252602090829060649082905f905af18015610813576120405750565b5083471015611f8f565b90810390811161130c5790565b1561212b57565b60405162461bcd60e51b815260206004820152601d60248201527f5377617047656d733a20563220464545204558434545445320313030300000006044820152606490fd5b811561217a570490565b634e487b7160e01b5f52601260045260245ffd5b8015612244578115158061223b575b156121e557611399926121da6121d46121cd6121df946121bd6001612124565b6121c7600a6112fc565b906127e3565b92836127e3565b93612785565b6128d8565b90612170565b60405162461bcd60e51b815260206004820152602860248201527f556e697377617056324c6962726172793a20494e53554646494349454e545f4c604482015267495155494449545960c01b6064820152608490fd5b5082151561219d565b60405162461bcd60e51b815260206004820152602b60248201527f556e697377617056324c6962726172793a20494e53554646494349454e545f4960448201526a1394155517d05353d5539560aa1b6064820152608490fd5b6020815260406122b883518260208501526060840190611433565b6020909301516001600160a01b031691015290565b919082604091031261016e576020825192015190565b6001600160a01b039182168152911515602083015260408201929092529116606082015260a06080820181905261139992910190611433565b600160ff1b811461130c575f0390565b61236a94936040939092906001600160a01b03811615612468575b5f906123538751612928565b506001600160a01b039081169116109788936129a8565b946001600160a01b0381161583146124585750828214612435576123ce6123a46123b26401000276a45b995b89519283916020830161229d565b03601f198101835282610a49565b8751630251596160e31b815298899788968795600487016122e3565b03926001600160a01b03165af190811561081357611399925f915f93612402575b50156123fb575061231c565b905061231c565b909250612427915060403d60401161242e575b61241f8183610a49565b8101906122cd565b915f6123ef565b503d612415565b6123ce6123a46123b273fffd8963efd1fc6a506488495d951d5263988d25612394565b6123a46123b26123ce9299612396565b5030612347565b6001600160a01b031680612483602a611401565b91603061248f846129cb565b53607861249b846129d8565b536124a66028611c88565b600181116124ce57506124b7575090565b63e22e27eb60e01b5f52600452601460245260445ffd5b90600f81166010811015612516576125119161250b916f181899199a1a9b1b9c1cb0b131b232b360811b901a61250485886129e8565b5360041c90565b916129f9565b6124a6565b6129b7565b805f9172184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b82101561264e575b806d04ee2d6d415b85acef8100000000600a921015612632575b662386f26fc1000081101561261d575b6305f5e10081101561260b575b6127108110156125fb575b60648110156125ec575b10156125e1575b6125cc60216125a160018501611401565b938401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b600a82061a8353600a900490565b80156125dc576125cc90916125a6565b505090565b600190910190612590565b60029060649004930192612589565b600490612710900493019261257f565b6008906305f5e1009004930192612574565b601090662386f26fc100009004930192612567565b6020906d04ee2d6d415b85acef81000000009004930192612557565b506040915072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b810461253d565b6123a46126bd612681835161251b565b92604051928391611b8e60208401967f19457468657265756d205369676e6564204d6573736167653a0a0000000000008852603a850190611b5d565b51902090565b611399916126d091612a05565b90929192612a5d565b1561016e57565b60208183031261016e5780359067ffffffffffffffff821161016e57019060408282031261016e57604051916040830183811067ffffffffffffffff821117610a4457604052803567ffffffffffffffff811161016e57602092612745918301610ce4565b83520135612752816101a6565b602082015290565b60ff5f51602061329b5f395f51905f525460401c161561277657565b631afcd79f60e31b5f5260045ffd5b906103e88202918083046103e8148115171561130c576103e88304036127a757565b60405162461bcd60e51b815260206004820152601460248201527364732d6d6174682d6d756c2d6f766572666c6f7760601b6044820152606490fd5b5f929180159182156127f9575b5050156127a757565b8181029450915081158285048214171561130c576128179084612170565b145f806127f0565b90801561282f5761139991612170565b634e487b7160e01b5f52600160045260245ffd5b6040516323b872dd60e01b60208083019182526001600160a01b0394851660248401529490931660448201526064810194909452925f919061288881608481016123a4565b519082855af115611379575f513d6128cf57506001600160a01b0381163b155b6128af5750565b635274afe760e01b5f9081526001600160a01b0391909116600452602490fd5b600114156128a8565b919082019182811161130c5782106128ec57565b60405162461bcd60e51b815260206004820152601460248201527364732d6d6174682d6164642d6f766572666c6f7760601b6044820152606490fd5b90612937601483511015613117565b602082015160601c91601781511061296c57601781015190602b81612963601792602094511015613117565b01015160601c91565b60405162461bcd60e51b8152602060048201526014602482015273746f55696e7432345f6f75744f66426f756e647360601b6044820152606490fd5b600160ff1b81101561016e5790565b634e487b7160e01b5f52603260045260245ffd5b8051156125165760200190565b8051600110156125165760210190565b908151811015612516570160200190565b801561130c575f190190565b8151919060418303612a3557612a2e9250602082015190606060408401519301515f1a9061315b565b9192909190565b50505f9160029190565b60041115612a4957565b634e487b7160e01b5f52602160045260245ffd5b612a6681612a3f565b80612a6f575050565b612a7881612a3f565b60018103612a8f5763f645eedf60e01b5f5260045ffd5b612a9881612a3f565b60028103612ab3575063fce698f760e01b5f5260045260245ffd5b80612abf600392612a3f565b14612ac75750565b6335e2f38360e21b5f5260045260245ffd5b91929083815f60408051612aec81610a28565b8281526020810183905201526001600160a01b0382811690821611612f40575b505060405190612b1b82610a28565b6001600160a01b0390811680835294166020820181815262ffffff93909316604083018181529395612b4e8382106126d9565b6001600160a01b0386169273b1c0fa0b789320044a6f623cfe5ebda9562602e38403612c6f5750505050612c5b936123a492612be6612bb4612baa612b9c612c49965160018060a01b031690565b94516001600160a01b031690565b925162ffffff1690565b604080516001600160a01b0395861660208201908152959094169084015262ffffff16606083015281608081016123a4565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527fe3572921be1688dba92df30c6781b8770499ff274d20ae9b325f4242634774fb60558201529182906075820190565b519020805f526001600160a01b031690565b611399336001600160a01b038316146126d9565b7340059a6f242c3de0e639693973004921b04d96ad8403612d155750505050612c5b936123a492612cb2612bb4612baa612b9c612c49965160018060a01b031690565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527f37dc715da5db6e8a4a7c5306fa01aad3ce7450a2013b27b10119c0e85dcf602b60558201529182906075820190565b939693732e08f5ff603e4343864b14599caedb19918bdcaf8403612e165750505090602060049493926040519586809263cefa779960e01b82525afa91821561081357612c5b95610172955f94612de5575b5051612d8390612bb490612baa906001600160a01b0316612b9c565b519020906040519260388401526f5af43d82803e903d91602b57fd5bf3ff60248401526014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c82012060788201526055604360018060a01b039201201690565b612d83919450612baa612b9c612e0c612bb49360203d60201161091b5761090d8183610a49565b9693505050612d67565b612c5b9792959373ff7b3e8c00e57ea31477c32a5b52a58eea47b07203612ec2575050516123a49350612c49929190612e5f90612bb490612baa906001600160a01b0316612b9c565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527f7ef2b01a451cbf890790278981756372e549443802ece149dc0b592cbc114ee960558201529182906075820190565b91509150612c499250612edd612bb46123a49562ffffff1690565b5190206040516001600160f81b03196020820190815260609590951b6001600160601b031916602182015260358101919091527fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b5460558201529182906075820190565b945090505f80612b0c565b601781518181039080821161130c578290612f7083612f6981611c96565b10156131dd565b612f7e82612f698582611ca4565b612f948551612f8d8585611ca4565b111561321a565b03612fac575050506040515f81526020810160405290565b60405192601f821692831560051b80858701019484860193010101905b808410612fe15750508252601f01601f191660405290565b9092602080918551815201930190612fc9565b92939290916001600160a01b03811615613110575b6040906130168651612928565b506001600160a01b0391821691161092835f613039613034886129a8565b61231c565b938282146130ec5761307b6123a461305f6401000276a49c89519283916020830161229d565b8751630251596160e31b81529b8c9788968795600487016122e3565b03926001600160a01b03165af1908115610813575f945f926130c8575b50156130b457906130ab6101c49261231c565b935b93146126d9565b92906130c26101c49261231c565b936130ad565b9094506130e4915060403d60401161242e5761241f8183610a49565b90935f613098565b61307b6123a461305f73fffd8963efd1fc6a506488495d951d5263988d259c612396565b5030613009565b1561311e57565b60405162461bcd60e51b8152602060048201526015602482015274746f416464726573735f6f75744f66426f756e647360581b6044820152606490fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084116131d2579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15610813575f516001600160a01b038116156131c857905f905f90565b505f906001905f90565b5050505f9160039190565b156131e457565b60405162461bcd60e51b815260206004820152600e60248201526d736c6963655f6f766572666c6f7760901b6044820152606490fd5b1561322157565b60405162461bcd60e51b8152602060048201526011602482015270736c6963655f6f75744f66426f756e647360781b6044820152606490fdfe9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993009b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00a26469706673582212201160b84e5411f95e5534395bcfd68a7ab4154067c6ae60c56896417c28e938d664736f6c634300081e0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in HYPE
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.