Source Code
Overview
HYPE Balance
HYPE Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
RouterUpgradeable
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { AdminAccessControlUpgradeable } from "@ambitfi/core-contracts/contracts/protocol/utils/Upgradeable.sol";
import { Upgradeable } from "@ambitfi/core-contracts/contracts/protocol/utils/Upgradeable.sol";
import { SweepableUpgradeable } from "@ambitfi/core-contracts/contracts/protocol/utils/SweepableUpgradeable.sol";
import { IAddressRegistry } from "@ambitfi/core-contracts/contracts/interfaces/IAddressRegistry.sol";
import { IVersionable } from "../../interfaces/IVersionable.sol";
import { Router } from "./Router.sol";
string constant VERSION = "1.1.0";
contract RouterUpgradeable is Upgradeable, SweepableUpgradeable, Router, IVersionable {
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(IAddressRegistry registry) public initializer {
__RouterUpgradeable_init(registry);
}
// solhint-disable-next-line func-name-mixedcase
function __RouterUpgradeable_init(IAddressRegistry registry) internal onlyInitializing {
__UUPSUpgradeable_init_unchained();
__AdminAccessControl_init_unchained(registry);
__Upgradeable_init_unchained();
__RouterUpgradeable_init_unchained();
}
// solhint-disable-next-line func-name-mixedcase, no-empty-blocks
function __RouterUpgradeable_init_unchained() internal onlyInitializing {}
receive() external payable {}
/// @inheritdoc IVersionable
function version() public pure returns (string memory) {
return VERSION;
}
function addressRegistry() public view override(Router, AdminAccessControlUpgradeable) returns (IAddressRegistry) {
return super.addressRegistry();
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
bytes32 constant AMBIT_ACCESS_CONTROL_LIST = 0x13a993c3bf3b4408a525cee20fb4780056c09c1378aeb33db21173b33d30bdd0; // ambit.acl
bytes32 constant AMBIT_TREASURY = 0xaef04b9e2c9ec721a01ca424bbc4285142e44828bb9153fda4eb5d820563cb16; // ambit.treasury
bytes32 constant AMBIT_GOVERNOR = 0xc178db1589a9b11430b9c9547236d8089bc566c2d91713297980e596baa4c0a0; // ambit.governor
bytes32 constant WETH = 0x0f8a193ff464434486c0daf7db2a895884365d2bc84ba47a68fcf89c1b14b5b8; // WETH
interface IAddressRegistry {
event SetAddress(address indexed addr, bytes32 key);
/**
* @notice Sets an address for a given key.
*
* @param key The key that defines the address.
* @param addr The address to assign to the given key.
*/
function setAddress(bytes32 key, address addr) external;
/**
* @notice Returns an address that is defined by the given key.
*
* @param key The key that defines the address.
*
* @return The address that is defined by the given key.
*/
function getAddress(bytes32 key) external view returns (address);
/**
* @notice Returns a list of addresses that are defined by the keys.
*
* @param keys The keys that defines the addresses.
*
* @return The addresses that are defined by the given keys.
*/
function getAddresses(bytes32[] calldata keys) external view returns (address[] memory);
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
bytes32 constant ADMIN_ROLE = 0xdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42; // ADMIN
bytes32 constant EMERGENCY_ADMIN_ROLE = 0x5c91514091af31f62f596a314af7d5be40146b2f2355969392f055e12e0982fb; // EMERGENCY_ADMIN
import { IRoleBasedAccessControl } from "./IRoleBasedAccessControl.sol";
// solhint-disable-next-line no-empty-blocks
interface IAccessControlList is IRoleBasedAccessControl {}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
interface IRoleBasedAccessControl {
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @notice Returns a value indicating whether or not the account has the specified role.
*
* @param role The role to test for.
* @param account The account to test for the role.
*
* @return Returns `true` if the account has the role, `false' if it doesnt.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @notice Grants a role to the account.
*
* @param role The role to grant.
* @param account The account to grant the role to.
*/
function grantRole(bytes32 role, address account) external;
/**
* @notice Revokes a role from the account.
*
* @param role The role to revoke.
* @param account The account to revoke the role from.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @notice Renounce a role from the calling account.
*
* @dev This can be used by the account itself to revoke roles that were assigned to it.
*
* @param role The role to revoke.
* @param account The account to renounce the role from. This must be the callers account.
*/
function renounceRole(bytes32 role, address account) external;
/**
* @notice Returns the list of members for a role.
*
* @param role The role to return the list of members for.
*
* @return The list of members that exists in the role.
*/
function getRoleMembers(bytes32 role) external view returns (address[] memory);
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
interface ISweepable {
event Sweep(address indexed caller, address indexed treasury, address indexed token, uint256 amount);
event SweepETH(address indexed caller, address indexed treasury, uint256 amount);
/**
* @notice Sends a given amount of a token to the treasury.
*
* @param token The token to send to the treasury.
* @param amount The amount to send to the treasury.
*/
function sweep(IERC20 token, uint256 amount) external;
/**
* @notice Sweeps the given amount of ETH to the treasury.
*
* @param amount The amount to send to the treasury.
*/
function sweepETH(uint256 amount) external;
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
library Errors {
error Authorization_NotAuthorized(address caller);
error AccessControlList_MissingAdminRole(address account);
error AccessControlList_CanNotRemoveRole(bytes32 role, address account);
error RoleBasedAccessControl_MissingRole(bytes32 role, address account);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { IAddressRegistry, AMBIT_ACCESS_CONTROL_LIST } from "../../interfaces/IAddressRegistry.sol";
import { IAccessControlList, ADMIN_ROLE, EMERGENCY_ADMIN_ROLE } from "../../interfaces/security/IAccessControlList.sol";
import { Errors } from "../../libraries/Errors.sol";
abstract contract AdminAccessControlUpgradeable is Initializable {
/// @custom:storage-location erc7201:ambit.storage.AdminAccessControl
struct AdminAccessControlStorage {
IAddressRegistry registry;
}
// keccak256(abi.encode(uint256(keccak256("ambit.storage.AdminAccessControl")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ADMIN_ACCESS_CONTROL_STORAGE_LOCATION =
0x24da5178c808c813cf7ebebe5cb60eb708540ed968d5353d43b24720d9a86500;
function getAdminAccessControlStorage() private pure returns (AdminAccessControlStorage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := ADMIN_ACCESS_CONTROL_STORAGE_LOCATION
}
}
// solhint-disable-next-line func-name-mixedcase
function __AdminAccessControl_init(IAddressRegistry registry) internal onlyInitializing {
__AdminAccessControl_init_unchained(registry);
}
// solhint-disable-next-line func-name-mixedcase
function __AdminAccessControl_init_unchained(IAddressRegistry registry) internal onlyInitializing {
AdminAccessControlStorage storage $ = getAdminAccessControlStorage();
$.registry = registry;
}
modifier onlyAdmin() {
checkRole(ADMIN_ROLE);
_;
}
modifier onlyEmergencyAdmin() {
checkRole(EMERGENCY_ADMIN_ROLE);
_;
}
function checkAdminOrEmergencyAdmin() private view {
bytes32[] memory roles = new bytes32[](2);
roles[0] = ADMIN_ROLE;
roles[1] = EMERGENCY_ADMIN_ROLE;
checkRoles(roles);
}
modifier onlyAdminOrEmergencyAdmin() {
checkAdminOrEmergencyAdmin();
_;
}
function checkRole(bytes32 role) internal view {
IAccessControlList acl = accessControlList();
if (acl.hasRole(role, msg.sender) == false) {
revert Errors.Authorization_NotAuthorized({ caller: msg.sender });
}
}
function checkRoles(bytes32[] memory roles) internal view {
IAccessControlList acl = accessControlList();
for (uint256 i; i < roles.length; i++) {
if (acl.hasRole(roles[i], msg.sender)) {
return;
}
}
revert Errors.Authorization_NotAuthorized({ caller: msg.sender });
}
function addressRegistry() public view virtual returns (IAddressRegistry) {
AdminAccessControlStorage storage $ = getAdminAccessControlStorage();
return IAddressRegistry($.registry);
}
function accessControlList() internal view returns (IAccessControlList) {
return IAccessControlList(addressRegistry().getAddress(AMBIT_ACCESS_CONTROL_LIST));
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ISweepable } from "../../interfaces/utils/ISweepable.sol";
library SweepableLib {
using SafeERC20 for IERC20;
using Address for address payable;
address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
function sweep(address treasury, address[] memory tokens) internal {
for (uint256 i = 0; i < tokens.length; i++) {
if (tokens[i] == ETH) {
uint256 amount = address(this).balance;
if (amount > 0) {
sweepETH(treasury, amount);
}
} else {
uint256 amount = IERC20(tokens[i]).balanceOf(address(this));
if (amount > 0) {
sweep(treasury, IERC20(tokens[i]), amount);
}
}
}
}
function sweep(address treasury, IERC20 token, uint256 amount) internal {
token.safeTransfer(treasury, amount);
emit ISweepable.Sweep(msg.sender, treasury, address(token), amount);
}
function sweepETH(address treasury, uint256 amount) internal {
payable(treasury).sendValue(amount);
emit ISweepable.SweepETH(msg.sender, treasury, amount);
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.20;
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { AMBIT_TREASURY } from "../../interfaces/IAddressRegistry.sol";
import { ISweepable } from "../../interfaces/utils/ISweepable.sol";
import { AdminAccessControlUpgradeable } from "../security/AdminAccessControlUpgradeable.sol";
import { SweepableLib } from "./SweepableLib.sol";
abstract contract SweepableUpgradeable is AdminAccessControlUpgradeable, ISweepable {
using SafeERC20 for IERC20;
using Address for address payable;
function sweep(address[] memory tokens) internal {
address treasury = addressRegistry().getAddress(AMBIT_TREASURY);
SweepableLib.sweep(treasury, tokens);
}
/// @inheritdoc ISweepable
function sweep(IERC20 token, uint256 amount) external onlyAdmin {
amount = Math.min(amount, token.balanceOf(address(this)));
address treasury = addressRegistry().getAddress(AMBIT_TREASURY);
SweepableLib.sweep(treasury, token, amount);
}
/// @inheritdoc ISweepable
function sweepETH(uint256 amount) public onlyAdmin {
amount = Math.min(amount, address(this).balance);
address treasury = addressRegistry().getAddress(AMBIT_TREASURY);
SweepableLib.sweepETH(treasury, amount);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;
import { UUPSUpgradeable } from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import { AdminAccessControlUpgradeable } from "../security/AdminAccessControlUpgradeable.sol";
abstract contract Upgradeable is UUPSUpgradeable, AdminAccessControlUpgradeable {
// solhint-disable-next-line func-name-mixedcase
function __Upgradeable_init() internal onlyInitializing {
__Upgradeable_init_unchained();
}
// solhint-disable-next-line func-name-mixedcase, no-empty-blocks
function __Upgradeable_init_unchained() internal onlyInitializing {}
// solhint-disable-next-line no-empty-blocks
function _authorizeUpgrade(address) internal view override onlyAdmin {}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.26;
import { TransientSlot } from "@openzeppelin/contracts/utils/TransientSlot.sol";
library ReentrancyGuardLib {
using TransientSlot for *;
error ReentrancyGuardFailed();
// keccak256(abi.encode(uint256(keccak256("hyperdrive.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD = 0xe26c696bf0e34aaf444e67b257b0ce1f00d161ab27c76bcd8c8582bed8ddd000;
function enabled() internal view returns (bool) {
return REENTRANCY_GUARD.asBoolean().tload();
}
/// @dev enable the reenterancy protection
function enable() internal {
require(enabled() == false, ReentrancyGuardFailed());
REENTRANCY_GUARD.asBoolean().tstore(true);
}
/// @dev disables the reenterancy protection
function disable() internal {
require(enabled(), ReentrancyGuardFailed());
REENTRANCY_GUARD.asBoolean().tstore(false);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reinitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
*
* NOTE: Consider following the ERC-7201 formula to derive storage locations.
*/
function _initializableStorageSlot() internal pure virtual returns (bytes32) {
return INITIALIZABLE_STORAGE;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
bytes32 slot = _initializableStorageSlot();
assembly {
$.slot := slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.22;
import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.22;
import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This library provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
*/
library ERC1967Utils {
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit IERC1967.Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit IERC1967.AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the ERC-1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit IERC1967.BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, bytes memory returndata) = recipient.call{value: amount}("");
if (!success) {
_revert(returndata);
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represents a slot holding an address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Int256Slot slot) internal view returns (int256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Int256Slot slot, int256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
interface IVersionable {
/// @notice Returns the contract version.
function version() external view returns (string memory);
}//SPDX-License-Identifier: Unlicense
pragma solidity ^0.8.28;
interface IInterestRateModel {
/**
* @notice Calculate the interest rate for borrowing from the market.
*
* @param market The market to calculate the interest rate for.
* @param totalAssets The current market assets.
* @param totalLiabilities The current market liabilities.
*
* @return The interest rate for borrowing from the market as a WAD (18 decimal places).
*/
function calculateRate(address market, uint256 totalAssets, uint256 totalLiabilities) external view returns (uint256);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { BPS } from "../../libraries/MathLib.sol";
import { IInterestRateModel } from "./IInterestRateModel.sol";
import { IVersionable } from "../IVersionable.sol";
uint16 constant FIELDS_PRICE_ORACLE = 0x01;
uint16 constant FIELDS_MAX_SUPPLY = 0x02;
uint16 constant FIELDS_MAX_LTV = 0x04;
uint16 constant FIELDS_LIQUIDATION_LTV = 0x08;
uint16 constant FIELDS_LIQUIDATION_DISCOUNT = 0x10;
interface IMarket is IERC4626, IVersionable {
error NoLiquidatorRole(address caller);
error AssetNotFound(address token);
error MaximumSupplyExceeded(uint256 maxSupply);
error ExpectedAmountExceeded(uint256 expected, uint256 actual);
error ZeroAmountNotAllowed();
error InsufficentLiquidity(uint256 required, uint256 available);
error UnhealthyAccount(address account);
error ZeroAddressNotAllowed();
error FlashLoanReceiverNotAllowed(address receiver);
error FlashLoanReceiverFailed(address receiver);
error FlashLoanAmountExceeded(uint256 available, uint256 wanted);
error FlashLoanFailed(uint256 requested, uint256 received);
error NotApprovedOperator(address owner, address caller);
error NotAllowedOrigin(address account, address onBehalfOf);
error AccountNotRepayable(address account, uint256 amount, uint256 shares);
error AccountNotLiquidatable(address account);
error LiquidationAmountExceedsLiabilities(uint256 liabilities, uint256 repaidAmount);
event SetMaxSupply(uint256 maxSupply);
event SetInterestRateModel(IInterestRateModel interestRateModel, address caller);
event SetCollateralAsset(address indexed token, CollateralAsset asset, address caller, uint256 timestamp);
event SetReserveFee(BPS bps);
event SetBorrowingFee(BPS bps, uint256 maxAmount, address feeReceiver, address caller, uint256 timestamp);
event SetHooks(IMarket.Hooks[] hooks, address caller, uint256 timestamp);
event SetApprovedOperator(address indexed operator, bool approvedOrRevoked, address caller, uint256 timestamp);
event SupplyCollateral(
address indexed account,
address indexed token,
uint256 marketId,
uint256 amount,
address supplier,
address caller,
uint256 timestamp
);
event WithdrawCollateral(
address indexed account,
address indexed token,
uint256 marketId,
uint256 amount,
address receiver,
address caller,
uint256 timestamp
);
event Deposit(
address indexed account,
address indexed asset,
address indexed receiver,
uint256 marketId,
uint256 assets,
uint256 shares,
uint256 timestamp
);
event Withdraw(
address indexed account,
address indexed asset,
address indexed receiver,
address owner,
uint256 marketId,
uint256 assets,
uint256 shares,
uint256 timestamp
);
event Borrow(
address indexed account,
address indexed asset,
address indexed receiver,
uint256 marketId,
uint256 amount,
uint256 feeAmount,
address feeReceiver,
address caller,
uint256 timestamp
);
event Repay(
address indexed account,
address indexed asset,
address indexed repayer,
uint256 marketId,
uint256 amount,
address caller,
uint256 timestamp
);
event Liquidate(
address indexed account,
uint256 marketId,
uint256 liabilities,
uint256 repaidAmount,
address[] tokens,
uint256[] seizedAmounts,
uint256 absorbed,
uint256 socialized,
uint256 toxic,
address caller,
uint256 timestamp
);
event Transfer(address indexed from, address indexed to, uint256 value, uint256 marketId, uint256 timestamp);
event AccrueLiabilities(uint256 marketId, uint256 accrued, uint256 liabilities, uint256 timestamp);
event ClaimReserves(
uint256 marketId,
address indexed toAddress,
uint256 amount,
address indexed caller,
uint256 timestamp
);
event FlashLoan(address indexed initiator, uint256 marketId, uint256 amount, uint256 timestamp);
event OperatorSet(address indexed controller, address indexed operator, bool approved);
struct Hooks {
address callback;
uint16 options;
}
struct CollateralAsset {
address token;
address priceOracle;
BPS maxLTV;
BPS liquidationLTV;
BPS liquidationDiscount;
uint256 maxSupply;
}
struct Snapshot {
uint32 timestamp;
uint256 totalShares;
uint256 totalAssets;
uint256 totalReserveAssets;
uint256 totalLiabilities;
uint256 totalBalance;
uint256 utilization;
uint256 exchangeRate;
}
/**
* @dev Approves or denies an approved operator.
*
* @param operator The address of the operator that can act on behalf of others.
* @param approved True if the operator has been approved, false if it has been revoked.
*/
function setApprovedOperator(address operator, bool approved) external;
/**
* @dev Returns true if the operator is approved to act on behalf of users, false if not.
*
* @param operator The address of the operator that can act on behalf of others.
*/
function isApprovedOperator(address operator) external view returns (bool);
/**
* @dev Sets or removes an operator for the caller.
*
* @param operator The address of the operator.
* @param approved The approval status.
*/
function setOperator(address operator, bool approved) external;
/**
* @dev Returns `true` if the `operator` is approved as an operator for an `account`.
*
* @param account The address of the account.
* @param operator The address of the operator.
*/
function isOperator(address account, address operator) external view returns (bool);
/**
* @notice Adds or updates a collateral asset in the market.
*
* @param asset The asset to add.
*/
function setCollateralAsset(IMarket.CollateralAsset memory asset) external;
/**
* @notice Returns a collateral asset by its token.
*
* @param token The token address of the collateral asset to return.
* @param mask The mask to determine which fields are required.
*/
function getCollateralAsset(address token, uint16 mask) external view returns (CollateralAsset memory);
/**
* @notice Returns all collateral assets in the market.
*
* @param mask The mask to determine which fields are required.
*/
function getCollateralAssets(uint16 mask) external view returns (CollateralAsset[] memory);
/**
* @notice Returns the ID of the market.
*/
function getMarketId() external view returns (uint256);
/**
* @notice Sets the interest rate model to apply to borrowing.
*
* @param interestRateModel The interest rate model to apply to borrowing.
*/
function setInterestRateModel(IInterestRateModel interestRateModel) external;
/**
* @notice Gets the interest rate model that is to be applied to borrowing.
*
* @return The interest rate model to apply to borrowing.
*/
function getInterestRateModel() external view returns (IInterestRateModel);
/**
* @notice Sets the supply cap for the market.
*/
function setMaxSupply(uint256 maxSupply) external;
/**
* @notice Returns the supply cap for the market.
*/
function getMaxSupply() external view returns (uint256);
/**
* @notice Sets the fee that is taken from the yield to be kept in the reserve.
*
* @param fee The fee parameters.
*/
function setReserveFee(BPS fee) external;
/**
* @notice Gets the reserve fee.
*
* @return The reserve fee that is taken from the yield.
*/
function getReserveFee() external view returns (BPS);
/**
* @notice Sets the borrowing fee.
*/
function setBorrowingFee(BPS fee, uint256 feeMaxAmount, address feeReceiver) external;
/**
* @notice Gets the configured borrowing fee.
*/
function getBorrowingFee() external view returns (BPS bps, uint256 maxAmount, address feeReceiver);
/**
* @notice Sets the hooks to run for the market.
*/
function setHooks(IMarket.Hooks[] memory hooks) external;
/**
* @notice Returns the current list of hooks active for the market.
*/
function getHooks() external view returns (IMarket.Hooks[] memory);
/**
* @notice Returns a preview of the current snapshot.
*/
function previewSnapshot() external view returns (Snapshot memory snapshot);
/**
* @notice Supply collateral to the users position.
*
* @dev This can only be called by the owner or an authorized operator account.
*
* @param account The account to supply the collateral to.
* @param token The token to supply.
* @param amount The amount of assets to supply.
* @param supplier The address to supply the assets from.
*/
function supplyCollateral(address account, address token, uint256 amount, address supplier) external;
/**
* @notice Withdraw collateral from the users position.
*
* @dev This can only be called by the owner or an authorized operator account.
*
* @param account The account to withdraw the collateral to.
* @param token The token to withdraw.
* @param amount The amount of assets to withdraw.
* @param receiver The account to receive the collateral once withdrawn.
*/
function withdrawCollateral(address account, address token, uint256 amount, address receiver) external;
/**
* @notice Borrow an amount on behalf of another account.
*
* @dev This can only be called by the owner or an authorized operator account.
*
* @param account The account to borrow from.
* @param amount The amount to borrow.
* @param receiver The account that will receive the funds.
*/
function borrow(address account, uint256 amount, address receiver) external;
/**
* @notice Repays an amount towards an accounts liabilities.
*
* @dev The repayer must be equal to the msg.sender unless the call is coming from
* authorized operator.
*
* @dev The repayment amount can be more than the current liabilities which allows for the full position to be repaid.
*
* @param account The account to repay the debt for.
* @param amount The amount to repay towards the current liabilities.
* @param repayer The account that is repaying the liabilities.
*/
function repay(address account, uint256 amount, address repayer) external;
/**
* @notice Returns a value indicating whether the account is healthy with the given level of debt.
*
* @param account The account to test whether it is healthy.
* @param debt The level of debt to test whether the account would be healthy.
*/
function isHealthy(address account, uint256 debt) external view returns (bool);
/**
* @notice Take a fee free flash loan from the market.
*/
function flashLoan(uint256 amount, bytes calldata data) external returns (bytes memory);
/**
* @notice Collect the reserves from the contract to the treasury.
*/
function claimReserves(uint256 amount) external;
/**
* @notice Returns The total collateral that has been supplied.
*/
function getTotalCollateral(address[] memory tokens) external view returns (uint256[] memory supplied);
/**
* @notice Returns the list of collateral that has been supplied by the account.
*/
function getUserCollateral(
address account
) external view returns (address[] memory tokens, uint256[] memory supplied);
/**
* @notice Returns the list of collateral that has been supplied by the account.
*/
function getUserCollateral(
address account,
address[] memory tokens
) external view returns (uint256[] memory supplied);
/**
* @notice Returns the outstanding liabilities for an account, including any interest that has accrued.
*
* @dev The liabilities is denominated in the base asset of the pool and this call must include
* any interest that has accrued up until the current time in which this function is called.
*
* @param account The account to return the liabilities for.
*
* @return liabilities The total liabilities that the account has accrued.
*/
function previewLiabilities(address account) external view returns (uint256 liabilities);
/**
* @notice Returns a value whether the account meets the criteria for liquidation.
*/
function isLiquidatable(address account) external view returns (bool);
/**
* @notice Previews the liquidation to allows the results to be known a head of time.
*
* @param account The account to liquidate.
* @param repayAmount The maximum amount to repay towards the outstanding debt.
* @param tokens The list of tokens to seize.
*
* @return repaidAmount The actual amount that was repaid towards the debt.
* @return seizedAmounts The amounts that would be seized from the collateral.
*/
function previewLiquidate(
address account,
uint256 repayAmount,
address[] memory tokens
) external view returns (uint256 repaidAmount, uint256[] memory seizedAmounts);
/**
* @notice Liquidate an accounts position.
*/
function liquidate(
address account,
uint256 repayAmount,
address[] memory tokens
) external returns (uint256 repaidAmount, uint256[] memory seizedAmounts);
/**
* @notice Previews the liquidation to allows the results to be known a head of time.
*
* @param account The account to liquidate.
* @param tokens The list of tokens to seize.
* @param seizeAmounts The amounts of collateral to seize.
*
* @return repaidAmount The actual amount that was repaid towards the debt.
* @return seizedAmounts The amounts that would be seized from the collateral.
*/
function previewLiquidate(
address account,
address[] memory tokens,
uint256[] memory seizeAmounts
) external view returns (uint256 repaidAmount, uint256[] memory seizedAmounts);
/**
* @notice Liquidate an accounts position.
*/
function liquidate(
address account,
address[] memory tokens,
uint256[] memory seizeAmounts
) external returns (uint256 repaidAmount, uint256[] memory seizedAmounts);
/**
* @notice Liquidate an accounts position without any restrictions on the health of the account.
*
* @dev This will be a permissioned call.
*/
function forceLiquidate(
address account,
uint256 repayAmount,
address[] memory tokens,
uint256[] memory seizeAmounts
) external;
}//SPDX-License-Identifier: Unlicense
pragma solidity ^0.8.24;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IWETH9 is IERC20 {
event Deposit(address indexed dst, uint256 wad);
event Withdrawal(address indexed src, uint256 wad);
function deposit() external payable;
function withdraw(uint256 wad) external;
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
uint256 constant WRAP_ETH = 1;
uint256 constant UNWRAP_ETH = 2;
uint256 constant SUPPLY_COLLATERAL = 3;
uint256 constant WITHDRAW_COLLATERAL = 4;
uint256 constant BORROW = 5;
uint256 constant REPAY = 6;
uint256 constant FLASH_LOAN = 7;
uint256 constant ERC4626_DEPOSIT = 8;
uint256 constant ERC4626_MINT = 9;
uint256 constant ERC4626_WITHDRAW = 10;
uint256 constant ERC4626_REDEEM = 11;
uint256 constant ERC20_TRANSFER = 12;
uint256 constant ERC20_TRANSFER_FROM = 13;
uint256 constant ERC20_APPROVE = 14;
uint256 constant CALL = 15;
uint256 constant SWAP = 16;
interface IRouter {
error UnknownMarket(uint256 marketId);
error UntrustedCallback(address sender);
error SlippageExceeded(uint256 expected, uint256 actual);
error ActorNotAllowed(Actor actor);
error ActorNotSpecified();
error AccountNotSpecified();
error InvalidAmount(uint256 expected, uint256 actual);
error UntrustedCaller(address caller);
error RegistryKeyNotFound(bytes32 key);
enum Actor {
Sender, // this could be the message sender or a delegated contract like a sub-account
Router
}
struct Action {
uint256 kind;
bytes data;
}
struct WrapETHAction {
uint256 amount;
Actor receiver;
}
struct UnwrapETHAction {
uint256 amount;
Actor supplier;
Actor receiver;
}
struct SupplyCollateralAction {
uint256 marketId;
address token;
uint256 amount;
Actor supplier;
}
struct WithdrawCollateralAction {
uint256 marketId;
address token;
uint256 amount;
Actor receiver;
}
struct BorrowAction {
uint256 marketId;
uint256 amount;
Actor receiver;
}
struct RepayAction {
uint256 marketId;
uint256 amount;
Actor repayer;
}
struct FlashLoanAction {
uint256 marketId;
uint256 amount;
Action[] actions;
}
struct ERC20ApproveAction {
address token;
bytes32 spender; // the key of the address in the registry
uint256 amount;
}
/// @dev transfers from the router to the sender
struct ERC20TransferAction {
address token;
uint256 amount;
}
/// @dev transfers from the sender to the router
struct ERC20TransferFromAction {
address token;
uint256 amount;
}
struct ERC4626DepositAction {
address target;
uint256 assets;
uint256 minSharesOut;
Actor supplier;
Actor receiver;
}
struct ERC4626MintAction {
address target;
uint256 shares;
uint256 maxAmountIn;
Actor supplier;
Actor receiver;
}
struct ERC4626WithdrawAction {
address target;
uint256 assets;
uint256 maxSharesOut;
Actor owner;
Actor receiver;
}
struct ERC4626RedeemAction {
address target;
uint256 shares;
uint256 minAmountOut;
Actor owner;
Actor receiver;
}
struct CallAction {
bytes32 target; // the key of the address in the registry
bytes data;
uint256 value; // the native amount to pass to the call
}
/// @dev calls a swap router using a generic interface
struct SwapAction {
bytes32 router; // the key of the address in the registry
bytes data;
uint256 value; // the native amount to pass to the call
address[] tokensIn;
uint256[] amountsIn;
address[] tokensOut;
uint256[] amountsOutMinimum;
}
function execute(Action[] calldata actions) external payable returns (bytes[] memory output);
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
/// @dev BPS is 4 decimal places and used for financial percentages
type BPS is uint16;
uint8 constant BPS_DECIMALS = 4;
library MathLib {
using Math for uint256;
/// @dev when comparing values of different precision we scale them all to an abnormally
/// high amount then perform the calculations and descale back afterwards
uint8 public constant SCALE = 27;
uint256 public constant WAD = 1e18;
function mul(BPS bps, uint256 amount) internal pure returns (uint256) {
return amount.mulDiv(BPS.unwrap(bps), 10000);
}
function scale(uint256 amount, uint8 from) internal pure returns (uint256) {
require(from <= SCALE); // solhint-disable-line reason-string
return amount * 10 ** uint256(SCALE - from);
}
function descale(uint256 amount, uint8 to) internal pure returns (uint256) {
require(to <= SCALE); // solhint-disable-line reason-string
return amount / 10 ** uint256(SCALE - to);
}
function scale(uint256 amount, uint8 from, uint8 to) internal pure returns (uint256) {
if (from < to) {
return amount * 10 ** uint256(to - from);
}
if (from > to) {
return amount / 10 ** uint256(from - to);
}
return amount;
}
function wadMul(uint256 a, uint256 b) internal pure returns (uint256) {
return ((a * b) + 0.5e18) / WAD;
}
function wadDiv(uint256 a, uint256 b) internal pure returns (uint256) {
return ((a * WAD) + (b / 2)) / b;
}
/// @dev this performs a POW operation using the algorithim defined here;
/// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
/// this has been adapted from the DSMath lib here;
/// https://github.com/dapphub/ds-math/blob/master/src/math.sol
function wadPow(uint256 x, uint256 n) internal pure returns (uint256) {
require(x >= WAD, "value too big");
uint256 z = n % 2 != 0 ? x : WAD;
for (n >>= 1; n > 0; n >>= 1) {
x = wadMul(x, x);
if (n % 2 != 0) {
z = wadMul(z, x);
}
}
return z;
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.28;
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { IAddressRegistry } from "@ambitfi/core-contracts/contracts/interfaces/IAddressRegistry.sol";
import { IWETH9 } from "../interfaces/markets/IWETH9.sol";
import { IMarket } from "../interfaces/markets/IMarket.sol";
import { IRouter } from "../interfaces/router/IRouter.sol";
bytes32 constant WETH = 0x0f8a193ff464434486c0daf7db2a895884365d2bc84ba47a68fcf89c1b14b5b8; // WETH
library RegistryLib {
function lookup(IAddressRegistry self, string memory key) internal view returns (address) {
return self.getAddress(keccak256(bytes(key)));
}
function lookupMarket(IAddressRegistry self, uint256 marketId) internal view returns (address) {
return lookup(self, string.concat("hyperdrive.market.", Strings.toString(marketId)));
}
function getMarket(IAddressRegistry self, uint256 marketId) internal view returns (IMarket) {
return IMarket(lookupMarket(self, marketId));
}
function getWETH(IAddressRegistry self) internal view returns (IWETH9) {
return IWETH9(self.getAddress(WETH));
}
function getRouter(IAddressRegistry self) internal view returns (IRouter) {
return IRouter(self.getAddress(keccak256("hyperdrive.router")));
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
import { RouterLib } from "./RouterLib.sol";
library ERC20RouterLib {
using SafeERC20 for IERC20;
function approve(
function(bytes32) external view returns (address) lookup,
IRouter.ERC20ApproveAction memory action
) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
IERC20 token = IERC20(action.token);
token.forceApprove(lookup(action.spender), action.amount);
}
function transfer(IRouter.ERC20TransferAction memory action) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
IERC20 token = IERC20(action.token);
// allow sweeping any remaining amount back to the caller
uint256 amount = action.amount == type(uint256).max ? token.balanceOf(RouterLib.router()) : action.amount;
if (amount > 0) {
token.safeTransfer(RouterLib.sender(), amount);
}
}
function transferFrom(IRouter.ERC20TransferFromAction memory action) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
IERC20 token = IERC20(action.token);
if (action.amount > 0) {
token.safeTransferFrom(RouterLib.sender(), RouterLib.router(), action.amount);
}
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
import { RouterLib } from "./RouterLib.sol";
library ERC4626RouterLib {
using SafeERC20 for IERC20;
using SafeERC20 for IERC4626;
function deposit(IRouter.ERC4626DepositAction memory action) internal returns (bytes memory output) {
IERC4626 vault = IERC4626(action.target);
IERC20 token = IERC20(vault.asset());
if (action.supplier == IRouter.Actor.Sender) {
token.safeTransferFrom(RouterLib.actor(action.supplier), address(this), action.assets);
}
token.forceApprove(action.target, action.assets);
uint256 shares = vault.deposit(action.assets, RouterLib.actor(action.receiver));
require(shares >= action.minSharesOut, IRouter.SlippageExceeded(action.minSharesOut, shares));
token.forceApprove(action.target, 0);
output = abi.encode(shares);
}
function mint(IRouter.ERC4626MintAction memory action) internal returns (bytes memory output) {
IERC4626 vault = IERC4626(action.target);
IERC20 token = IERC20(vault.asset());
if (action.supplier == IRouter.Actor.Sender) {
token.safeTransferFrom(RouterLib.actor(action.supplier), address(this), action.maxAmountIn);
}
vault.forceApprove(action.target, action.maxAmountIn);
uint256 amountIn = vault.mint(action.shares, RouterLib.actor(action.receiver));
require(amountIn <= action.maxAmountIn, IRouter.SlippageExceeded(action.maxAmountIn, amountIn));
vault.forceApprove(action.target, 0);
// refund dust
if (RouterLib.actor(action.supplier) != RouterLib.router() && amountIn < action.maxAmountIn) {
token.safeTransfer(RouterLib.actor(action.supplier), action.maxAmountIn - amountIn);
}
output = abi.encode(amountIn);
}
function withdraw(IRouter.ERC4626WithdrawAction memory action) internal returns (bytes memory output) {
IERC4626 vault = IERC4626(action.target);
uint256 sharesOut = vault.withdraw(action.assets, RouterLib.actor(action.receiver), RouterLib.actor(action.owner));
require(sharesOut <= action.maxSharesOut, IRouter.SlippageExceeded(action.maxSharesOut, sharesOut));
output = abi.encode(sharesOut);
}
function redeem(IRouter.ERC4626RedeemAction memory action) internal returns (bytes memory output) {
IERC4626 vault = IERC4626(action.target);
uint256 amountOut = vault.redeem(action.shares, RouterLib.actor(action.receiver), RouterLib.actor(action.owner));
require(amountOut >= action.minAmountOut, IRouter.SlippageExceeded(action.minAmountOut, amountOut));
output = abi.encode(amountOut);
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
import { IWETH9 } from "../../interfaces/markets/IWETH9.sol";
import { IMarket } from "../../interfaces/markets/IMarket.sol";
import { Router } from "./Router.sol";
import { RouterLib } from "./RouterLib.sol";
library MarketRouterLib {
using Address for address payable;
using SafeERC20 for IERC20;
using SafeERC20 for IERC4626;
using SafeERC20 for IWETH9;
function supplyCollateral(
IMarket market,
IRouter.SupplyCollateralAction memory action
) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
require(address(market) != address(0), IRouter.UnknownMarket(action.marketId));
if (action.supplier == IRouter.Actor.Router) {
// when supplying from the router we can allow taking the maximum that is available
// it is up to other integrators to ensure they dont leave dust on the contract
action.amount = Math.min(IERC20(action.token).balanceOf(address(this)), action.amount);
IERC20(action.token).forceApprove(address(market), action.amount);
}
market.supplyCollateral(RouterLib.account(), action.token, action.amount, RouterLib.actor(action.supplier));
if (action.supplier == IRouter.Actor.Router) {
IERC20(action.token).forceApprove(address(market), 0);
}
}
function withdrawCollateral(
IMarket market,
IRouter.WithdrawCollateralAction memory action
) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
require(address(market) != address(0), IRouter.UnknownMarket(action.marketId));
market.withdrawCollateral(RouterLib.account(), action.token, action.amount, RouterLib.actor(action.receiver));
}
function borrow(IMarket market, IRouter.BorrowAction memory action) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
require(address(market) != address(0), IRouter.UnknownMarket(action.marketId));
market.borrow(RouterLib.account(), action.amount, RouterLib.actor(action.receiver));
}
function repay(IMarket market, IRouter.RepayAction memory action) internal returns (bytes memory output) {
output = RouterLib.NOTHING;
require(address(market) != address(0), IRouter.UnknownMarket(action.marketId));
IERC20 token = IERC20(market.asset());
if (action.repayer == IRouter.Actor.Router) {
token.forceApprove(address(market), action.amount);
}
market.repay(RouterLib.account(), action.amount, RouterLib.actor(action.repayer));
if (action.repayer == IRouter.Actor.Router) {
token.forceApprove(address(market), 0);
}
}
function flashLoan(IMarket market, IRouter.FlashLoanAction memory action) internal returns (bytes memory output) {
require(address(market) != address(0), IRouter.UnknownMarket(action.marketId));
output = market.flashLoan(action.amount, abi.encodeCall(Router.flashLoanCallback, (RouterLib.sender(), action)));
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { ReentrancyGuardLib } from "@ambitlabs/hyperdrive-periphery-contracts/contracts/ReentrancyGuardLib.sol";
import { IAddressRegistry } from "@ambitfi/core-contracts/contracts/interfaces/IAddressRegistry.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
import { IMarket } from "../../interfaces/markets/IMarket.sol";
import { RegistryLib } from "../../libraries/RegistryLib.sol";
import { RouterLib } from "./RouterLib.sol";
import { MarketRouterLib } from "./MarketRouterLib.sol";
import { ERC20RouterLib } from "./ERC20RouterLib.sol";
import { ERC4626RouterLib } from "./ERC4626RouterLib.sol";
import { SwapLib } from "./SwapLib.sol";
import { WRAP_ETH, UNWRAP_ETH, SUPPLY_COLLATERAL, WITHDRAW_COLLATERAL, BORROW, REPAY, FLASH_LOAN, ERC4626_DEPOSIT, ERC4626_MINT, ERC4626_WITHDRAW, ERC4626_REDEEM, ERC20_APPROVE, ERC20_TRANSFER, ERC20_TRANSFER_FROM, CALL, SWAP } from "../../interfaces/router/IRouter.sol";
abstract contract Router is IRouter {
using RegistryLib for IAddressRegistry;
using SafeERC20 for IERC20;
address private constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
modifier nonReentrant() {
ReentrancyGuardLib.enable();
_;
ReentrancyGuardLib.disable();
}
function addressRegistry() public view virtual returns (IAddressRegistry);
function beforeExecute(Action[] memory actions) internal virtual returns (Action[] memory) {
RouterLib.account(msg.sender);
RouterLib.sender(msg.sender);
return actions;
}
function afterExecute(Action[] memory) internal virtual {
RouterLib.account(address(0));
RouterLib.sender(address(0));
}
function execute(Action[] memory actions) external payable nonReentrant returns (bytes[] memory output) {
actions = beforeExecute(actions);
output = new bytes[](actions.length);
for (uint256 i; i < actions.length; i++) {
output[i] = dispatch(actions[i]);
}
afterExecute(actions);
}
function dispatch(Action memory action) internal virtual returns (bytes memory) {
if (action.kind == WRAP_ETH) {
return RouterLib.wrapETH(addressRegistry().getWETH(), abi.decode(action.data, (WrapETHAction)));
}
if (action.kind == UNWRAP_ETH) {
return RouterLib.unwrapETH(addressRegistry().getWETH(), abi.decode(action.data, (UnwrapETHAction)));
}
if (action.kind == SUPPLY_COLLATERAL) {
SupplyCollateralAction memory params = abi.decode(action.data, (SupplyCollateralAction));
return MarketRouterLib.supplyCollateral(addressRegistry().getMarket(params.marketId), params);
}
if (action.kind == WITHDRAW_COLLATERAL) {
WithdrawCollateralAction memory params = abi.decode(action.data, (WithdrawCollateralAction));
return MarketRouterLib.withdrawCollateral(addressRegistry().getMarket(params.marketId), params);
}
if (action.kind == BORROW) {
BorrowAction memory params = abi.decode(action.data, (BorrowAction));
return MarketRouterLib.borrow(addressRegistry().getMarket(params.marketId), params);
}
if (action.kind == REPAY) {
RepayAction memory params = abi.decode(action.data, (RepayAction));
return MarketRouterLib.repay(addressRegistry().getMarket(params.marketId), params);
}
if (action.kind == FLASH_LOAN) {
FlashLoanAction memory params = abi.decode(action.data, (FlashLoanAction));
return MarketRouterLib.flashLoan(addressRegistry().getMarket(params.marketId), params);
}
if (action.kind == ERC20_TRANSFER) {
return ERC20RouterLib.transfer(abi.decode(action.data, (ERC20TransferAction)));
}
if (action.kind == ERC20_TRANSFER_FROM) {
return ERC20RouterLib.transferFrom(abi.decode(action.data, (ERC20TransferFromAction)));
}
if (action.kind == ERC20_APPROVE) {
return ERC20RouterLib.approve(addressRegistry().getAddress, abi.decode(action.data, (ERC20ApproveAction)));
}
if (action.kind == ERC4626_DEPOSIT) {
return ERC4626RouterLib.deposit(abi.decode(action.data, (ERC4626DepositAction)));
}
if (action.kind == ERC4626_MINT) {
return ERC4626RouterLib.mint(abi.decode(action.data, (ERC4626MintAction)));
}
if (action.kind == ERC4626_WITHDRAW) {
return ERC4626RouterLib.withdraw(abi.decode(action.data, (ERC4626WithdrawAction)));
}
if (action.kind == ERC4626_REDEEM) {
return ERC4626RouterLib.redeem(abi.decode(action.data, (ERC4626RedeemAction)));
}
// if (action.kind == CALL) {
// return RouterLib.call(addressRegistry().getAddress, abi.decode(action.data, (CallAction)));
// }
// if (action.kind == SWAP) {
// return SwapLib.swap(addressRegistry().getAddress, abi.decode(action.data, (SwapAction)));
// }
return RouterLib.NOTHING;
}
function flashLoanCallback(address initiator, IRouter.FlashLoanAction memory action) external returns (bytes memory) {
require(initiator != address(0) && initiator == RouterLib.sender(), UntrustedCaller(initiator));
IMarket market = addressRegistry().getMarket(action.marketId);
require(msg.sender == address(market), UntrustedCallback(msg.sender));
bytes[] memory output = new bytes[](action.actions.length);
for (uint256 i; i < action.actions.length; i++) {
output[i] = dispatch(action.actions[i]);
}
// allow the flash loan to be repaid
IERC20(market.asset()).forceApprove(address(market), action.amount);
return abi.encode(output);
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { TransientSlot } from "@openzeppelin/contracts/utils/TransientSlot.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IWETH9 } from "../../interfaces/markets/IWETH9.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
library RouterLib {
using TransientSlot for *;
using Address for address;
using Address for address payable;
using SafeERC20 for IWETH9;
using SafeERC20 for IERC20;
// keccak256(abi.encode(uint256(keccak256("hyperdrive.RouterSender")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ROUTER_SENDER = 0x2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df00;
// keccak256(abi.encode(uint256(keccak256("hyperdrive.RouterAccount")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant ROUTER_ACCOUNT = 0x77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b8900;
bytes internal constant NOTHING = abi.encode("");
function account(address value) internal {
ROUTER_ACCOUNT.asAddress().tstore(value);
}
function account() internal view returns (address value) {
value = ROUTER_ACCOUNT.asAddress().tload();
require(value != address(0), IRouter.AccountNotSpecified());
}
function sender(address value) internal {
ROUTER_SENDER.asAddress().tstore(value);
}
function sender() internal view returns (address value) {
value = ROUTER_SENDER.asAddress().tload();
require(value != address(0), IRouter.ActorNotSpecified());
}
function actor(IRouter.Actor value) internal view returns (address) {
if (value == IRouter.Actor.Sender) {
return sender();
}
if (value == IRouter.Actor.Router) {
return router();
}
revert IRouter.ActorNotAllowed(value);
}
function router() internal view returns (address) {
return address(this);
}
function wrapETH(IWETH9 weth, IRouter.WrapETHAction memory action) internal returns (bytes memory output) {
// NOTE: this conditional check means thats the wrapETH action can only be called once in the execution stack
// and this is acceptable for now as it is expected that wrapping and unwrapping of the native token should
// be handled on the outer edges of the list of actions
require(msg.value == action.amount, IRouter.InvalidAmount(action.amount, msg.value));
output = NOTHING;
weth.deposit{ value: action.amount }();
if (actor(action.receiver) != router()) {
weth.safeTransfer(actor(action.receiver), action.amount);
}
}
function unwrapETH(IWETH9 weth, IRouter.UnwrapETHAction memory action) internal returns (bytes memory output) {
output = NOTHING;
if (action.supplier != IRouter.Actor.Router) {
weth.safeTransferFrom(actor(action.supplier), address(this), action.amount);
}
action.amount = Math.min(action.amount, weth.balanceOf(address(this)));
weth.withdraw(action.amount);
if (action.receiver != IRouter.Actor.Router) {
payable(actor(action.receiver)).sendValue(action.amount);
}
}
function call(
function(bytes32) external view returns (address) lookup,
IRouter.CallAction memory action
) internal returns (bytes memory output) {
revert();
// address target = lookup(action.target);
// require(target != address(0), IRouter.RegistryKeyNotFound(action.target));
// output = target.functionCallWithValue(action.data, action.value);
}
}// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.28;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { IRouter } from "../../interfaces/router/IRouter.sol";
library SwapLib {
using Address for address;
using SafeERC20 for IERC20;
function swap(
function(bytes32) external view returns (address) lookup,
IRouter.SwapAction memory action
) internal returns (bytes memory output) {
revert();
// address router = lookup(action.router);
// require(router != address(0), IRouter.RegistryKeyNotFound(action.router));
// uint256[] memory balances = new uint256[](action.tokensOut.length);
// // store the current balances for the tokens that we need to assert the output amount for
// for (uint256 i; i < action.tokensOut.length; i++) {
// balances[i] = IERC20(action.tokensOut[i]).balanceOf(address(this));
// }
// // set token approvals for the input tokens
// for (uint256 i; i < action.tokensIn.length; i++) {
// IERC20(action.tokensIn[i]).forceApprove(router, action.amountsIn[i]);
// }
// output = router.functionCallWithValue(action.data, action.value);
// // reset approvals
// for (uint256 i; i < action.tokensIn.length; i++) {
// IERC20(action.tokensIn[i]).forceApprove(router, 0);
// }
// // assert the amounts out so we dont need to trust the router
// for (uint256 i; i < action.tokensOut.length; i++) {
// uint256 amountOut = IERC20(action.tokensOut[i]).balanceOf(address(this)) - balances[i];
// require(amountOut >= action.amountsOutMinimum[i], "output amount failed");
// }
}
}{
"viaIR": true,
"evmVersion": "cancun",
"optimizer": {
"enabled": true,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccountNotSpecified","type":"error"},{"inputs":[{"internalType":"enum IRouter.Actor","name":"actor","type":"uint8"}],"name":"ActorNotAllowed","type":"error"},{"inputs":[],"name":"ActorNotSpecified","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"Authorization_NotAuthorized","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"ReentrancyGuardFailed","type":"error"},{"inputs":[{"internalType":"bytes32","name":"key","type":"bytes32"}],"name":"RegistryKeyNotFound","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"SlippageExceeded","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"inputs":[{"internalType":"uint256","name":"marketId","type":"uint256"}],"name":"UnknownMarket","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"UntrustedCallback","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"UntrustedCaller","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Sweep","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SweepETH","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"addressRegistry","outputs":[{"internalType":"contract IAddressRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"kind","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IRouter.Action[]","name":"actions","type":"tuple[]"}],"name":"execute","outputs":[{"internalType":"bytes[]","name":"output","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"initiator","type":"address"},{"components":[{"internalType":"uint256","name":"marketId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"components":[{"internalType":"uint256","name":"kind","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct IRouter.Action[]","name":"actions","type":"tuple[]"}],"internalType":"struct IRouter.FlashLoanAction","name":"action","type":"tuple"}],"name":"flashLoanCallback","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IAddressRegistry","name":"registry","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sweep","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sweepETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60a080604052346100c257306080525f516020612e295f395f51905f525460ff8160401c166100b3576002600160401b03196001600160401b03821601610060575b604051612d6290816100c7823960805181818161090d015261099e0152f35b6001600160401b0319166001600160401b039081175f516020612e295f395f51905f525581527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a15f80610041565b63f92ee8a960e01b5f5260045ffd5b5f80fdfe6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80634f1ef2861461096157806352d1902d146108fb57806354fd4d50146108b45780636ea056a9146107315780638620be801461051f5780639830ff6a1461040f578063ad3cb1cc146103c8578063b58ce21d1461025d578063c4d66de8146100c45763f3ad65f40361000e57346100c0575f3660031901126100c0575f516020612cad5f395f51905f52546040516001600160a01b039091168152602090f35b5f80fd5b346100c05760203660031901126100c0576004356001600160a01b038116908190036100c0575f516020612ced5f395f51905f52549060ff8260401c1615916001600160401b03811680159081610255575b600114908161024b575b159081610242575b506102335767ffffffffffffffff1981166001175f516020612ced5f395f51905f525582610207575b5061015a612b49565b610162612b49565b61016a612b49565b6bffffffffffffffffffffffff60a01b5f516020612cad5f395f51905f525416175f516020612cad5f395f51905f52556101a2612b49565b6101aa612b49565b6101b057005b68ff0000000000000000195f516020612ced5f395f51905f5254165f516020612ced5f395f51905f52557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b68ffffffffffffffffff191668010000000000000001175f516020612ced5f395f51905f525582610151565b63f92ee8a960e01b5f5260045ffd5b90501584610128565b303b159150610120565b849150610116565b60203660031901126100c0576004356001600160401b0381116100c057610288903690600401610c4b565b5f516020612d0d5f395f51905f525c6103b95760015f516020612d0d5f395f51905f525d337f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005d337f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005d6102fc8151610d7a565b905f5b815181101561033a578061031e61031860019385610dc3565b5161135e565b6103288286610dc3565b526103338185610dc3565b50016102ff565b825f7f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005d5f7f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005d5f516020612d0d5f395f51905f525c156103b9576103b5905f5f516020612d0d5f395f51905f525d60405191829182610d07565b0390f35b630800025b60e31b5f5260045ffd5b346100c0575f3660031901126100c0576103b56040516103e9604082610b8e565b60058152640352e302e360dc1b6020820152604051918291602083526020830190610c10565b346100c05760203660031901126100c05760043561042b610deb565b479081808210911802186024602060018060a01b035f516020612cad5f395f51905f525416604051928380926321f8a72160e01b82527faef04b9e2c9ec721a01ca424bbc4285142e44828bb9153fda4eb5d820563cb1660048301525afa908115610514575f916104da575b506001600160a01b0316906104ac8183612b02565b6040519081527f617a904b01259b64867cc3246576c5b0b4d723c337757ec09ae915f57633864a60203392a3005b90506020813d60201161050c575b816104f560209383610b8e565b810103126100c05761050690610d66565b82610497565b3d91506104e8565b6040513d5f823e3d90fd5b346100c05760403660031901126100c057610538610b2e565b6024356001600160401b0381116100c057606060031982360301126100c05760405161056381610b44565b816004013581526020810191602481013583526044810135906001600160401b0382116100c05760046105999236920101610c4b565b60408201908152926001600160a01b031680151580610718575b1561070657505f516020612cad5f395f51905f525490516001600160a01b03916105df91908316610f86565b168033036106f3576105f2835151610d7a565b915f5b8451805182101561062c579061061061031882600194610dc3565b61061a8287610dc3565b526106258186610dc3565b50016105f5565b50506040516338d52e0f60e01b81529350602084600481855afa938415610514575f946106a4575b6103b561068261069086610673898888519160018060a01b03166128e5565b60405192839160208301610d07565b03601f198101835282610b8e565b604051918291602083526020830190610c10565b9350916020843d6020116106eb575b816106c060209383610b8e565b810103126100c05761067361068293610690936106df6103b597610d66565b96509350919350610654565b3d91506106b3565b63a4fa10c160e01b5f523360045260245ffd5b63382fa62360e11b5f5260045260245ffd5b506001600160a01b03610729610f44565b1681146105b3565b346100c05760403660031901126100c0576004356001600160a01b038116908181036100c057602435610762610deb565b6040516370a0823160e01b815230600482015290602082602481875afa918215610514575f92610880575b508180821091180218906024602060018060a01b035f516020612cad5f395f51905f525416604051928380926321f8a72160e01b82527faef04b9e2c9ec721a01ca424bbc4285142e44828bb9153fda4eb5d820563cb1660048301525afa9081156105145783905f92610841575b508161080792936129a4565b6040519182526001600160a01b03169033907ffe6f9ffae65cf2c41cdbb3faf5a94e71eab2c2c62215df2efd79e12e451d0b6290602090a4005b9150506020813d602011610878575b8161085d60209383610b8e565b810103126100c0578261087261080792610d66565b916107fb565b3d9150610850565b9091506020813d6020116108ac575b8161089c60209383610b8e565b810103126100c05751908461078d565b3d915061088f565b346100c0575f3660031901126100c0576103b56040516108d5604082610b8e565b60058152640312e312e360dc1b6020820152604051918291602083526020830190610c10565b346100c0575f3660031901126100c0577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031630036109525760206040515f516020612ccd5f395f51905f528152f35b63703e46dd60e11b5f5260045ffd5b60403660031901126100c057610975610b2e565b6024356001600160401b0381116100c057610994903690600401610bca565b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016308114908115610b0c575b50610952576109d6610deb565b6040516352d1902d60e01b81526001600160a01b0383169290602081600481875afa5f9181610ad8575b50610a185783634c9c8ce360e01b5f5260045260245ffd5b805f516020612ccd5f395f51905f52859203610ac65750813b15610ab4575f516020612ccd5f395f51905f5280546001600160a01b031916821790557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2815115610a9c575f8083602061001895519101845af4610a96612ad3565b91612c67565b505034610aa557005b63b398979f60e01b5f5260045ffd5b634c9c8ce360e01b5f5260045260245ffd5b632a87526960e21b5f5260045260245ffd5b9091506020813d602011610b04575b81610af460209383610b8e565b810103126100c057519085610a00565b3d9150610ae7565b5f516020612ccd5f395f51905f52546001600160a01b031614159050836109c9565b600435906001600160a01b03821682036100c057565b606081019081106001600160401b03821117610b5f57604052565b634e487b7160e01b5f52604160045260245ffd5b604081019081106001600160401b03821117610b5f57604052565b90601f801991011681019081106001600160401b03821117610b5f57604052565b6001600160401b038111610b5f57601f01601f191660200190565b81601f820112156100c057803590610be182610baf565b92610bef6040519485610b8e565b828452602083830101116100c057815f926020809301838601378301015290565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b6001600160401b038111610b5f5760051b60200190565b9080601f830112156100c057813591610c6383610c34565b92610c716040519485610b8e565b80845260208085019160051b830101918383116100c05760208101915b838310610c9d57505050505090565b82356001600160401b0381116100c0578201906040828703601f1901126100c05760405190610ccb82610b73565b602083013582526040830135916001600160401b0383116100c057610cf888602080969581960101610bca565b83820152815201920191610c8e565b602081016020825282518091526040820191602060408360051b8301019401925f915b838310610d3957505050505090565b9091929394602080610d57600193603f198682030187528951610c10565b97019301930191939290610d2a565b51906001600160a01b03821682036100c057565b90610d8482610c34565b610d916040519182610b8e565b8281528092610da2601f1991610c34565b01905f5b828110610db257505050565b806060602080938501015201610da6565b8051821015610dd75760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b5f516020612cad5f395f51905f52546040516321f8a72160e01b81527f13a993c3bf3b4408a525cee20fb4780056c09c1378aeb33db21173b33d30bdd0600482015290602090829060249082906001600160a01b03165afa908115610514575f91610f05575b50604051632474521560e21b81527fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42600482015233602482015290602090829060449082906001600160a01b03165afa908115610514575f91610eca575b5015610eb757565b6367841c7b60e11b5f523360045260245ffd5b90506020813d602011610efd575b81610ee560209383610b8e565b810103126100c0575180151581036100c0575f610eaf565b3d9150610ed8565b90506020813d602011610f3c575b81610f2060209383610b8e565b810103126100c0576020610f35604492610d66565b9150610e51565b3d9150610f13565b7f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005c906001600160a01b03821615610f7857565b627d197d60e41b5f5260045ffd5b9080815f9272184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b811015611197575b50806d04ee2d6d415b85acef8100000000600a92101561117c575b662386f26fc10000811015611168575b6305f5e100811015611157575b612710811015611148575b606481101561113a575b1015611130575b6001820190600a602161102961101385610baf565b946110216040519687610b8e565b808652610baf565b602085019590601f19013687378401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b8282061a83530490811561106857600a9061103a565b50506020916110b0603260405180938682019571343cb832b9323934bb329736b0b935b2ba1760711b87525180918484015e81015f838201520301601f198101835282610b8e565b5190206040516321f8a72160e01b8152600481019190915291829060249082906001600160a01b03165afa908115610514575f916110f6575b506001600160a01b031690565b90506020813d602011611128575b8161111160209383610b8e565b810103126100c05761112290610d66565b5f6110e9565b3d9150611104565b9060010190610ffe565b606460029104930192610ff7565b61271060049104930192610fed565b6305f5e10060089104930192610fe2565b662386f26fc1000060109104930192610fd5565b6d04ee2d6d415b85acef810000000060209104930192610fc5565b6040935072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b90049050600a610faa565b91908260809103126100c057604051608081018181106001600160401b03821117610b5f5760405260608193805183526111f960208201610d66565b60208401526040810151604084015201519060028210156100c05760600152565b91908260609103126100c05760405161123281610b44565b60408193805183526020810151602084015201519060028210156100c05760400152565b81601f820112156100c05780519061126d82610baf565b9261127b6040519485610b8e565b828452602083830101116100c057815f9260208093018386015e8301015290565b91908260409103126100c0576040516112b481610b73565b60208082946112c281610d66565b84520151910152565b91908260a09103126100c05760405160a081018181106001600160401b03821117610b5f5760405280926112fe81610d66565b8252602081015160208301526040810151604083015260608101519060028210156100c057608091606084015201519060028210156100c05760800152565b6040516020808201525f60408201526040815261135b606082610b8e565b90565b80519060015f9214612701576002815114612524576003815114612325576004815114612239576005815114612142576006815114611f80576007815114611cb357600c815114611bee57600d815114611b8d57600e815114611a9a5760088151146118d457600981511461163d57600a81511461153b57600b8151146113e957505061135b61133d565b602001518051810160a082820312611537579060208061140b930191016112cb565b80516020820151608083015190916001600160a01b03169060028110156115235761143590612b74565b6060840151600281101561150f5791611491939186611455602095612b74565b604051635d043b2960e11b815260048101959095526001600160a01b039283166024860152909116604484015291938492839182906064820190565b03925af192831561150357926114cd575b508160406114b592015180821015612a5d565b6040519060208201526020815261135b604082610b8e565b9091506020813d6020116114fb575b816114e960209383610b8e565b810103126100c05751906114b56114a2565b3d91506114dc565b604051903d90823e3d90fd5b634e487b7160e01b86526021600452602486fd5b634e487b7160e01b85526021600452602485fd5b8280fd5b602001518051810160a082820312611537579060208061155d930191016112cb565b80516020820151608083015190916001600160a01b03169060028110156115235761158790612b74565b6060840151600281101561150f57916115e39391866115a7602095612b74565b604051632d182be560e21b815260048101959095526001600160a01b039283166024860152909116604484015291938492839182906064820190565b03925af19283156115035792611607575b508160406114b592015180821115612a5d565b9091506020813d602011611635575b8161162360209383610b8e565b810103126100c05751906114b56115f4565b3d9150611616565b602001518051810160a082820312611537579060208061165f930191016112cb565b9160018060a01b038351166040516338d52e0f60e01b8152602081600481855afa9081156118c957849161188b575b5060018060a01b031690606085018051600281101561150f5715611861575b85516040870180519093916116cc91906001600160a01b0316836128e5565b6020870151966080810151600281101561184d576117209697986116f1602092612b74565b6040516394bf804d60e01b815260048101929092526001600160a01b0316602482015296879081906044820190565b03818b865af195861561184257889661180a575b50906117599161174987865180821115612a5d565b516001600160a01b03169061282c565b805160028110156117f65761176d90612b74565b6001600160a01b0316301415806117ec575b6117a2575b5050509091506040519060208201526020815261135b604082610b8e565b51600281101561150f576117b590612b74565b9051918383039283116117d8576117ce939495506129a4565b81905f8080611784565b634e487b7160e01b86526011600452602486fd5b508151841061177f565b634e487b7160e01b87526021600452602487fd5b919095506020823d60201161183a575b8161182760209383610b8e565b810103126100c057905194611759611734565b3d915061181a565b6040513d8a823e3d90fd5b634e487b7160e01b88526021600452602488fd5b8051600281101561150f5761187861188691612b74565b604088015190309086612bc2565b6116ad565b90506020813d6020116118c1575b816118a660209383610b8e565b810103126118bd576118b790610d66565b5f61168e565b8380fd5b3d9150611899565b6040513d86823e3d90fd5b602001518051810160a08282031261153757906020806118f6930191016112cb565b9060018060a01b038251166040516338d52e0f60e01b8152602081600481855afa908115611a8f578391611a55575b5060018060a01b03169060608401805160028110156115235715611a17575b508351602085018051909161196391906001600160a01b0316856128e5565b51906080850151600281101561152357916020916119836119b894612b74565b604051636e553f6560e01b815260048101939093526001600160a01b0316602483015290928391908290879082906044820190565b03925af192831561150357926119e1575b50826117498360406114b59596015180821015612a5d565b91506020823d602011611a0f575b816119fc60209383610b8e565b810103126100c0576114b59151916119c9565b3d91506119ef565b516002811015611a4157611a2d611a3b91612b74565b602086015190309085612bc2565b5f611944565b634e487b7160e01b84526021600452602484fd5b90506020813d602011611a87575b81611a7060209383610b8e565b8101031261153757611a8190610d66565b5f611925565b3d9150611a63565b6040513d85823e3d90fd5b90602060018060a01b035f516020612cad5f395f51905f525416920151606081805181010312611b895760405192611ad184610b44565b611add60208301610d66565b84526060604083015192602086019384520151604085019081526020611b0161133d565b9560018060a01b0390511693516024604051809581936321f8a72160e01b835260048301525afa9182156118c9578492611b43575b5061135b935051916128e5565b915091926020823d602011611b81575b81611b6060209383610b8e565b81010312611b7e575090611b7761135b9392610d66565b905f611b36565b80fd5b3d9150611b53565b5080fd5b60200151908151820190604083830312611b7e575090602080611bb29301910161129c565b611bba61133d565b81516020909201805191926001600160a01b031691611bd857505090565b61135b91611be4610f44565b9151913091612bc2565b60200151805181016040828203126115375790602080611c109301910161129c565b611c1861133d565b91602060018060a01b038351169201515f1981145f14611cac57506040516370a0823160e01b8152306004820152602081602481865afa9182156115035791611c7a575b505b80611c6857505090565b61135b91611c74610f44565b906129a4565b90506020813d602011611ca4575b81611c9560209383610b8e565b810103126100c057515f611c5c565b3d9150611c88565b9050611c5e565b602001518051810160208101916020818303126118bd576020810151906001600160401b038211611eb95701916060838303126118bd5760405191611cf783610b44565b60208401518352604084015193602084019485526060810151906001600160401b038211611f7c5790602091010182601f82011215611f7857805191611d3c83610c34565b93611d4a6040519586610b8e565b83855260208086019460051b84010192818411611f745760208101945b848610611f0657505050505060408301918252505f516020612cad5f395f51905f525482516001600160a01b0391611da191908316610f86565b1691611db08151841515612a43565b835191611dbb610f44565b946040519563010c417d60e71b602088015260018060a01b031660248701526040604487015260c48601925160648701525160848601525190606060a4860152815180915260e4850190602060e48260051b88010193019187905b828210611eca5750505050918391611e3c8695611e66979503601f198101855284610b8e565b83604051809781958294635296a43160e01b84526004840152604060248401526044830190610c10565b03925af1918215611ebd578192611e7c57505090565b909291503d8084833e611e8f8183610b8e565b8101906020818303126118bd578051906001600160401b038211611eb95761135b93945001611256565b8480fd5b50604051903d90823e3d90fd5b90919293602080611ef860019360e3198c82030186526040838a518051845201519181858201520190610c10565b960192019201909291611e16565b85516001600160401b038111611f70578201604081860312611f705760405190611f2f82610b73565b602081015182526040810151906001600160401b038211611f6c5791611f5d86602080969481960101611256565b83820152815201950194611d67565b8c80fd5b8a80fd5b8880fd5b8580fd5b8680fd5b60200151805181016060828203126115375790602080611fa29301910161121a565b5f516020612cad5f395f51905f52548151611fc5916001600160a01b0316610f86565b91611fce61133d565b825190936001600160a01b03169190611fe990831515612a43565b6040516338d52e0f60e01b8152602081600481865afa9081156121375782916120fd575b5060018060a01b031692604081019081516002811015611a41576001146120e9575b6020612039612c06565b910151825160028110156115235761205090612b74565b91853b15611eb95760405163173aba7160e21b81526001600160a01b0391821660048201526024810192909252919091166044820152828160648183885af18015611a8f579083916120d4575b5050519060028210156120c057506001146120b757505090565b61135b9161282c565b634e487b7160e01b81526021600452602490fd5b816120de91610b8e565b611b8957815f61209d565b6120f8602082015185876128e5565b61202f565b90506020813d60201161212f575b8161211860209383610b8e565b81010312611b895761212990610d66565b5f61200d565b3d915061210b565b6040513d84823e3d90fd5b602001518051810160608282031261153757906020806121649301910161121a565b5f516020612cad5f395f51905f5254815191929161218a916001600160a01b0316610f86565b9161219361133d565b815190936001600160a01b0316906121ad90821515612a43565b6121b5612c06565b91604060208201519101516002811015611523576121d290612b74565b92823b15611eb957604051636c665a5560e01b81526001600160a01b0391821660048201526024810192909252909216604483015282908290818381606481015b03925af180156121375761222657505090565b612231828092610b8e565b611b7e575090565b6020015180518101608082820312611537579060208061225b930191016111bd565b5f516020612cad5f395f51905f52548151919291612281916001600160a01b0316610f86565b9161228a61133d565b815190936001600160a01b031691906122a590831515612a43565b6122ad612c06565b9160018060a01b0360208301511660606040840151930151600281101561150f576122d790612b74565b93823b15611f7857604051632d37a2ef60e11b81526001600160a01b039182166004820152918116602483015260448201939093529290911660648301528290829081838160848101612213565b60200151805181016080828203126115375790602080612347930191016111bd565b5f516020612cad5f395f51905f5254815161236a916001600160a01b0316610f86565b9161237361133d565b825190936001600160a01b0316919061238e90831515612a43565b60608301805160028110156125105760011461246e575b6123ad612c06565b6020850194604060018060a01b03875116910151918351600281101561150f576123d690612b74565b863b15611f785760405163582daa9760e11b81526001600160a01b03928316600482015292821660248401526044830193909352919091166064820152828160848183885af18015611a8f57908391612459575b5050519060028210156120c0575060011461244457505090565b905161135b91906001600160a01b031661282c565b8161246391610b8e565b611b8957815f61242a565b602084810180516040516370a0823160e01b81523060048201529290839060249082906001600160a01b03165afa9081156118c957859085926124d8575b6124d393506040880192835190818082109118021880935260018060a01b039051166128e5565b6123a5565b9150506020823d602011612508575b816124f460209383610b8e565b810103126100c057846124d39251916124ac565b3d91506124e7565b634e487b7160e01b83526021600452602483fd5b5f516020612cad5f395f51905f5254602090612548906001600160a01b03166129e0565b91015191606083805181010312611b7e576040519161256683610b44565b60208401518352604084015193600285101561153757602084019485526060015190600282101561153757604084019182526125a061133d565b9480516002811015611523575f19016126d1575b5083516040516370a0823160e01b81523060048201526001600160a01b039092169190602082602481865afa9182156126c6578592612692575b508180821091180218808552813b156118bd578391602483926040519485938492632e1a7d4d60e01b845260048401525af18015611a8f5790839161267d575b505080516002811015612510575f1901612649575b50505090565b519060028210156120c0575061267591906001600160a01b039061266c90612b74565b16905190612b02565b5f8080612643565b8161268791610b8e565b611b8957815f61262e565b9091506020813d6020116126be575b816126ae60209383610b8e565b810103126100c05751905f6125ee565b3d91506126a1565b6040513d87823e3d90fd5b516002811015611a41576126e76126fb91612b74565b85519030906001600160a01b038516612bc2565b5f6125b4565b90602061272360018060a01b035f516020612cad5f395f51905f5254166129e0565b920151906040828051810103126100c0576040519061274182610b73565b604060208401519384845201519260028410156100c05760208301938452803403612816575061276f61133d565b825190946001600160a01b03169390843b156100c0575f60049160405192838092630d0e30db60e41b8252895af1801561051457612801575b5080516002811015612510576127bd90612b74565b306001600160a01b03909116036127d6575b5050505090565b519060028210156120c05750906127f06127f89392612b74565b9051916129a4565b5f8080806127cf565b61280e9192505f90610b8e565b5f905f6127a8565b6307c83fcf60e41b5f526004523460245260445ffd5b6040519060205f8184019463095ea7b360e01b865260018060a01b03169485602486015281604486015260448552612865606486610b8e565b84519082855af15f513d826128c0575b50501561288157505050565b6128b96128be936040519063095ea7b360e01b602083015260248201525f6044820152604481526128b3606482610b8e565b82612a7b565b612a7b565b565b9091506128dd57506001600160a01b0381163b15155b5f80612875565b6001146128d6565b60405163095ea7b360e01b60208083019182526001600160a01b0385166024840152604480840196909652948252929390925f90612924606486610b8e565b84519082855af15f513d8261297f575b50501561294057505050565b60405163095ea7b360e01b60208201526001600160a01b0390931660248401525f60448085019190915283526128be926128b9906128b3606482610b8e565b90915061299c57506001600160a01b0381163b15155b5f80612934565b600114612995565b60405163a9059cbb60e01b60208201526001600160a01b039290921660248301526044808301939093529181526128be916128b9606483610b8e565b6040516321f8a72160e01b81527f0f8a193ff464434486c0daf7db2a895884365d2bc84ba47a68fcf89c1b14b5b8600482015290602090829060249082906001600160a01b03165afa908115610514575f916110f657506001600160a01b031690565b15612a4b5750565b6369616b8760e01b5f5260045260245ffd5b15612a66575050565b6371c4efed60e01b5f5260045260245260445ffd5b905f602091828151910182855af115610514575f513d612aca57506001600160a01b0381163b155b612aaa5750565b635274afe760e01b5f9081526001600160a01b0391909116600452602490fd5b60011415612aa3565b3d15612afd573d90612ae482610baf565b91612af26040519384610b8e565b82523d5f602084013e565b606090565b814710612b32575f918291829182916001600160a01b03165af1612b24612ad3565b9015612b2d5750565b612c49565b504763cf47918160e01b5f5260045260245260445ffd5b60ff5f516020612ced5f395f51905f525460401c1615612b6557565b631afcd79f60e31b5f5260045ffd5b906002821015612bae578115612ba45760018214612b9f575063ee7bbe9d60e01b5f5260045260245ffd5b309150565b905061135b610f44565b634e487b7160e01b5f52602160045260245ffd5b6040516323b872dd60e01b60208201526001600160a01b0392831660248201529290911660448301526064808301939093529181526128be916128b9608483610b8e565b7f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005c906001600160a01b03821615612c3a57565b634c0c913f60e01b5f5260045ffd5b805115612c5857805190602001fd5b63d6bda27560e01b5f5260045ffd5b90612c725750612c49565b81511580612ca3575b612c83575090565b639996b31560e01b5f9081526001600160a01b0391909116600452602490fd5b50803b15612c7b56fe24da5178c808c813cf7ebebe5cb60eb708540ed968d5353d43b24720d9a86500360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbcf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00e26c696bf0e34aaf444e67b257b0ce1f00d161ab27c76bcd8c8582bed8ddd000a2646970667358221220d69c0c59caa8d5ae83a972c81076ff7a2cfc1f39fbc046f8899d0dd05469fd8664736f6c634300081c0033f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00
Deployed Bytecode
0x6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c80634f1ef2861461096157806352d1902d146108fb57806354fd4d50146108b45780636ea056a9146107315780638620be801461051f5780639830ff6a1461040f578063ad3cb1cc146103c8578063b58ce21d1461025d578063c4d66de8146100c45763f3ad65f40361000e57346100c0575f3660031901126100c0575f516020612cad5f395f51905f52546040516001600160a01b039091168152602090f35b5f80fd5b346100c05760203660031901126100c0576004356001600160a01b038116908190036100c0575f516020612ced5f395f51905f52549060ff8260401c1615916001600160401b03811680159081610255575b600114908161024b575b159081610242575b506102335767ffffffffffffffff1981166001175f516020612ced5f395f51905f525582610207575b5061015a612b49565b610162612b49565b61016a612b49565b6bffffffffffffffffffffffff60a01b5f516020612cad5f395f51905f525416175f516020612cad5f395f51905f52556101a2612b49565b6101aa612b49565b6101b057005b68ff0000000000000000195f516020612ced5f395f51905f5254165f516020612ced5f395f51905f52557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b68ffffffffffffffffff191668010000000000000001175f516020612ced5f395f51905f525582610151565b63f92ee8a960e01b5f5260045ffd5b90501584610128565b303b159150610120565b849150610116565b60203660031901126100c0576004356001600160401b0381116100c057610288903690600401610c4b565b5f516020612d0d5f395f51905f525c6103b95760015f516020612d0d5f395f51905f525d337f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005d337f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005d6102fc8151610d7a565b905f5b815181101561033a578061031e61031860019385610dc3565b5161135e565b6103288286610dc3565b526103338185610dc3565b50016102ff565b825f7f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005d5f7f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005d5f516020612d0d5f395f51905f525c156103b9576103b5905f5f516020612d0d5f395f51905f525d60405191829182610d07565b0390f35b630800025b60e31b5f5260045ffd5b346100c0575f3660031901126100c0576103b56040516103e9604082610b8e565b60058152640352e302e360dc1b6020820152604051918291602083526020830190610c10565b346100c05760203660031901126100c05760043561042b610deb565b479081808210911802186024602060018060a01b035f516020612cad5f395f51905f525416604051928380926321f8a72160e01b82527faef04b9e2c9ec721a01ca424bbc4285142e44828bb9153fda4eb5d820563cb1660048301525afa908115610514575f916104da575b506001600160a01b0316906104ac8183612b02565b6040519081527f617a904b01259b64867cc3246576c5b0b4d723c337757ec09ae915f57633864a60203392a3005b90506020813d60201161050c575b816104f560209383610b8e565b810103126100c05761050690610d66565b82610497565b3d91506104e8565b6040513d5f823e3d90fd5b346100c05760403660031901126100c057610538610b2e565b6024356001600160401b0381116100c057606060031982360301126100c05760405161056381610b44565b816004013581526020810191602481013583526044810135906001600160401b0382116100c05760046105999236920101610c4b565b60408201908152926001600160a01b031680151580610718575b1561070657505f516020612cad5f395f51905f525490516001600160a01b03916105df91908316610f86565b168033036106f3576105f2835151610d7a565b915f5b8451805182101561062c579061061061031882600194610dc3565b61061a8287610dc3565b526106258186610dc3565b50016105f5565b50506040516338d52e0f60e01b81529350602084600481855afa938415610514575f946106a4575b6103b561068261069086610673898888519160018060a01b03166128e5565b60405192839160208301610d07565b03601f198101835282610b8e565b604051918291602083526020830190610c10565b9350916020843d6020116106eb575b816106c060209383610b8e565b810103126100c05761067361068293610690936106df6103b597610d66565b96509350919350610654565b3d91506106b3565b63a4fa10c160e01b5f523360045260245ffd5b63382fa62360e11b5f5260045260245ffd5b506001600160a01b03610729610f44565b1681146105b3565b346100c05760403660031901126100c0576004356001600160a01b038116908181036100c057602435610762610deb565b6040516370a0823160e01b815230600482015290602082602481875afa918215610514575f92610880575b508180821091180218906024602060018060a01b035f516020612cad5f395f51905f525416604051928380926321f8a72160e01b82527faef04b9e2c9ec721a01ca424bbc4285142e44828bb9153fda4eb5d820563cb1660048301525afa9081156105145783905f92610841575b508161080792936129a4565b6040519182526001600160a01b03169033907ffe6f9ffae65cf2c41cdbb3faf5a94e71eab2c2c62215df2efd79e12e451d0b6290602090a4005b9150506020813d602011610878575b8161085d60209383610b8e565b810103126100c0578261087261080792610d66565b916107fb565b3d9150610850565b9091506020813d6020116108ac575b8161089c60209383610b8e565b810103126100c05751908461078d565b3d915061088f565b346100c0575f3660031901126100c0576103b56040516108d5604082610b8e565b60058152640312e312e360dc1b6020820152604051918291602083526020830190610c10565b346100c0575f3660031901126100c0577f00000000000000000000000003e65321dcba6565eb8ca90096633c790a9fd5a76001600160a01b031630036109525760206040515f516020612ccd5f395f51905f528152f35b63703e46dd60e11b5f5260045ffd5b60403660031901126100c057610975610b2e565b6024356001600160401b0381116100c057610994903690600401610bca565b6001600160a01b037f00000000000000000000000003e65321dcba6565eb8ca90096633c790a9fd5a716308114908115610b0c575b50610952576109d6610deb565b6040516352d1902d60e01b81526001600160a01b0383169290602081600481875afa5f9181610ad8575b50610a185783634c9c8ce360e01b5f5260045260245ffd5b805f516020612ccd5f395f51905f52859203610ac65750813b15610ab4575f516020612ccd5f395f51905f5280546001600160a01b031916821790557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2815115610a9c575f8083602061001895519101845af4610a96612ad3565b91612c67565b505034610aa557005b63b398979f60e01b5f5260045ffd5b634c9c8ce360e01b5f5260045260245ffd5b632a87526960e21b5f5260045260245ffd5b9091506020813d602011610b04575b81610af460209383610b8e565b810103126100c057519085610a00565b3d9150610ae7565b5f516020612ccd5f395f51905f52546001600160a01b031614159050836109c9565b600435906001600160a01b03821682036100c057565b606081019081106001600160401b03821117610b5f57604052565b634e487b7160e01b5f52604160045260245ffd5b604081019081106001600160401b03821117610b5f57604052565b90601f801991011681019081106001600160401b03821117610b5f57604052565b6001600160401b038111610b5f57601f01601f191660200190565b81601f820112156100c057803590610be182610baf565b92610bef6040519485610b8e565b828452602083830101116100c057815f926020809301838601378301015290565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b6001600160401b038111610b5f5760051b60200190565b9080601f830112156100c057813591610c6383610c34565b92610c716040519485610b8e565b80845260208085019160051b830101918383116100c05760208101915b838310610c9d57505050505090565b82356001600160401b0381116100c0578201906040828703601f1901126100c05760405190610ccb82610b73565b602083013582526040830135916001600160401b0383116100c057610cf888602080969581960101610bca565b83820152815201920191610c8e565b602081016020825282518091526040820191602060408360051b8301019401925f915b838310610d3957505050505090565b9091929394602080610d57600193603f198682030187528951610c10565b97019301930191939290610d2a565b51906001600160a01b03821682036100c057565b90610d8482610c34565b610d916040519182610b8e565b8281528092610da2601f1991610c34565b01905f5b828110610db257505050565b806060602080938501015201610da6565b8051821015610dd75760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b5f516020612cad5f395f51905f52546040516321f8a72160e01b81527f13a993c3bf3b4408a525cee20fb4780056c09c1378aeb33db21173b33d30bdd0600482015290602090829060249082906001600160a01b03165afa908115610514575f91610f05575b50604051632474521560e21b81527fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42600482015233602482015290602090829060449082906001600160a01b03165afa908115610514575f91610eca575b5015610eb757565b6367841c7b60e11b5f523360045260245ffd5b90506020813d602011610efd575b81610ee560209383610b8e565b810103126100c0575180151581036100c0575f610eaf565b3d9150610ed8565b90506020813d602011610f3c575b81610f2060209383610b8e565b810103126100c0576020610f35604492610d66565b9150610e51565b3d9150610f13565b7f2bb2653324aca374dde55b9e445a0741fa5fbabd9d913cb269b1b38c5839df005c906001600160a01b03821615610f7857565b627d197d60e41b5f5260045ffd5b9080815f9272184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b811015611197575b50806d04ee2d6d415b85acef8100000000600a92101561117c575b662386f26fc10000811015611168575b6305f5e100811015611157575b612710811015611148575b606481101561113a575b1015611130575b6001820190600a602161102961101385610baf565b946110216040519687610b8e565b808652610baf565b602085019590601f19013687378401015b5f1901916f181899199a1a9b1b9c1cb0b131b232b360811b8282061a83530490811561106857600a9061103a565b50506020916110b0603260405180938682019571343cb832b9323934bb329736b0b935b2ba1760711b87525180918484015e81015f838201520301601f198101835282610b8e565b5190206040516321f8a72160e01b8152600481019190915291829060249082906001600160a01b03165afa908115610514575f916110f6575b506001600160a01b031690565b90506020813d602011611128575b8161111160209383610b8e565b810103126100c05761112290610d66565b5f6110e9565b3d9150611104565b9060010190610ffe565b606460029104930192610ff7565b61271060049104930192610fed565b6305f5e10060089104930192610fe2565b662386f26fc1000060109104930192610fd5565b6d04ee2d6d415b85acef810000000060209104930192610fc5565b6040935072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b90049050600a610faa565b91908260809103126100c057604051608081018181106001600160401b03821117610b5f5760405260608193805183526111f960208201610d66565b60208401526040810151604084015201519060028210156100c05760600152565b91908260609103126100c05760405161123281610b44565b60408193805183526020810151602084015201519060028210156100c05760400152565b81601f820112156100c05780519061126d82610baf565b9261127b6040519485610b8e565b828452602083830101116100c057815f9260208093018386015e8301015290565b91908260409103126100c0576040516112b481610b73565b60208082946112c281610d66565b84520151910152565b91908260a09103126100c05760405160a081018181106001600160401b03821117610b5f5760405280926112fe81610d66565b8252602081015160208301526040810151604083015260608101519060028210156100c057608091606084015201519060028210156100c05760800152565b6040516020808201525f60408201526040815261135b606082610b8e565b90565b80519060015f9214612701576002815114612524576003815114612325576004815114612239576005815114612142576006815114611f80576007815114611cb357600c815114611bee57600d815114611b8d57600e815114611a9a5760088151146118d457600981511461163d57600a81511461153b57600b8151146113e957505061135b61133d565b602001518051810160a082820312611537579060208061140b930191016112cb565b80516020820151608083015190916001600160a01b03169060028110156115235761143590612b74565b6060840151600281101561150f5791611491939186611455602095612b74565b604051635d043b2960e11b815260048101959095526001600160a01b039283166024860152909116604484015291938492839182906064820190565b03925af192831561150357926114cd575b508160406114b592015180821015612a5d565b6040519060208201526020815261135b604082610b8e565b9091506020813d6020116114fb575b816114e960209383610b8e565b810103126100c05751906114b56114a2565b3d91506114dc565b604051903d90823e3d90fd5b634e487b7160e01b86526021600452602486fd5b634e487b7160e01b85526021600452602485fd5b8280fd5b602001518051810160a082820312611537579060208061155d930191016112cb565b80516020820151608083015190916001600160a01b03169060028110156115235761158790612b74565b6060840151600281101561150f57916115e39391866115a7602095612b74565b604051632d182be560e21b815260048101959095526001600160a01b039283166024860152909116604484015291938492839182906064820190565b03925af19283156115035792611607575b508160406114b592015180821115612a5d565b9091506020813d602011611635575b8161162360209383610b8e565b810103126100c05751906114b56115f4565b3d9150611616565b602001518051810160a082820312611537579060208061165f930191016112cb565b9160018060a01b038351166040516338d52e0f60e01b8152602081600481855afa9081156118c957849161188b575b5060018060a01b031690606085018051600281101561150f5715611861575b85516040870180519093916116cc91906001600160a01b0316836128e5565b6020870151966080810151600281101561184d576117209697986116f1602092612b74565b6040516394bf804d60e01b815260048101929092526001600160a01b0316602482015296879081906044820190565b03818b865af195861561184257889661180a575b50906117599161174987865180821115612a5d565b516001600160a01b03169061282c565b805160028110156117f65761176d90612b74565b6001600160a01b0316301415806117ec575b6117a2575b5050509091506040519060208201526020815261135b604082610b8e565b51600281101561150f576117b590612b74565b9051918383039283116117d8576117ce939495506129a4565b81905f8080611784565b634e487b7160e01b86526011600452602486fd5b508151841061177f565b634e487b7160e01b87526021600452602487fd5b919095506020823d60201161183a575b8161182760209383610b8e565b810103126100c057905194611759611734565b3d915061181a565b6040513d8a823e3d90fd5b634e487b7160e01b88526021600452602488fd5b8051600281101561150f5761187861188691612b74565b604088015190309086612bc2565b6116ad565b90506020813d6020116118c1575b816118a660209383610b8e565b810103126118bd576118b790610d66565b5f61168e565b8380fd5b3d9150611899565b6040513d86823e3d90fd5b602001518051810160a08282031261153757906020806118f6930191016112cb565b9060018060a01b038251166040516338d52e0f60e01b8152602081600481855afa908115611a8f578391611a55575b5060018060a01b03169060608401805160028110156115235715611a17575b508351602085018051909161196391906001600160a01b0316856128e5565b51906080850151600281101561152357916020916119836119b894612b74565b604051636e553f6560e01b815260048101939093526001600160a01b0316602483015290928391908290879082906044820190565b03925af192831561150357926119e1575b50826117498360406114b59596015180821015612a5d565b91506020823d602011611a0f575b816119fc60209383610b8e565b810103126100c0576114b59151916119c9565b3d91506119ef565b516002811015611a4157611a2d611a3b91612b74565b602086015190309085612bc2565b5f611944565b634e487b7160e01b84526021600452602484fd5b90506020813d602011611a87575b81611a7060209383610b8e565b8101031261153757611a8190610d66565b5f611925565b3d9150611a63565b6040513d85823e3d90fd5b90602060018060a01b035f516020612cad5f395f51905f525416920151606081805181010312611b895760405192611ad184610b44565b611add60208301610d66565b84526060604083015192602086019384520151604085019081526020611b0161133d565b9560018060a01b0390511693516024604051809581936321f8a72160e01b835260048301525afa9182156118c9578492611b43575b5061135b935051916128e5565b915091926020823d602011611b81575b81611b6060209383610b8e565b81010312611b7e575090611b7761135b9392610d66565b905f611b36565b80fd5b3d9150611b53565b5080fd5b60200151908151820190604083830312611b7e575090602080611bb29301910161129c565b611bba61133d565b81516020909201805191926001600160a01b031691611bd857505090565b61135b91611be4610f44565b9151913091612bc2565b60200151805181016040828203126115375790602080611c109301910161129c565b611c1861133d565b91602060018060a01b038351169201515f1981145f14611cac57506040516370a0823160e01b8152306004820152602081602481865afa9182156115035791611c7a575b505b80611c6857505090565b61135b91611c74610f44565b906129a4565b90506020813d602011611ca4575b81611c9560209383610b8e565b810103126100c057515f611c5c565b3d9150611c88565b9050611c5e565b602001518051810160208101916020818303126118bd576020810151906001600160401b038211611eb95701916060838303126118bd5760405191611cf783610b44565b60208401518352604084015193602084019485526060810151906001600160401b038211611f7c5790602091010182601f82011215611f7857805191611d3c83610c34565b93611d4a6040519586610b8e565b83855260208086019460051b84010192818411611f745760208101945b848610611f0657505050505060408301918252505f516020612cad5f395f51905f525482516001600160a01b0391611da191908316610f86565b1691611db08151841515612a43565b835191611dbb610f44565b946040519563010c417d60e71b602088015260018060a01b031660248701526040604487015260c48601925160648701525160848601525190606060a4860152815180915260e4850190602060e48260051b88010193019187905b828210611eca5750505050918391611e3c8695611e66979503601f198101855284610b8e565b83604051809781958294635296a43160e01b84526004840152604060248401526044830190610c10565b03925af1918215611ebd578192611e7c57505090565b909291503d8084833e611e8f8183610b8e565b8101906020818303126118bd578051906001600160401b038211611eb95761135b93945001611256565b8480fd5b50604051903d90823e3d90fd5b90919293602080611ef860019360e3198c82030186526040838a518051845201519181858201520190610c10565b960192019201909291611e16565b85516001600160401b038111611f70578201604081860312611f705760405190611f2f82610b73565b602081015182526040810151906001600160401b038211611f6c5791611f5d86602080969481960101611256565b83820152815201950194611d67565b8c80fd5b8a80fd5b8880fd5b8580fd5b8680fd5b60200151805181016060828203126115375790602080611fa29301910161121a565b5f516020612cad5f395f51905f52548151611fc5916001600160a01b0316610f86565b91611fce61133d565b825190936001600160a01b03169190611fe990831515612a43565b6040516338d52e0f60e01b8152602081600481865afa9081156121375782916120fd575b5060018060a01b031692604081019081516002811015611a41576001146120e9575b6020612039612c06565b910151825160028110156115235761205090612b74565b91853b15611eb95760405163173aba7160e21b81526001600160a01b0391821660048201526024810192909252919091166044820152828160648183885af18015611a8f579083916120d4575b5050519060028210156120c057506001146120b757505090565b61135b9161282c565b634e487b7160e01b81526021600452602490fd5b816120de91610b8e565b611b8957815f61209d565b6120f8602082015185876128e5565b61202f565b90506020813d60201161212f575b8161211860209383610b8e565b81010312611b895761212990610d66565b5f61200d565b3d915061210b565b6040513d84823e3d90fd5b602001518051810160608282031261153757906020806121649301910161121a565b5f516020612cad5f395f51905f5254815191929161218a916001600160a01b0316610f86565b9161219361133d565b815190936001600160a01b0316906121ad90821515612a43565b6121b5612c06565b91604060208201519101516002811015611523576121d290612b74565b92823b15611eb957604051636c665a5560e01b81526001600160a01b0391821660048201526024810192909252909216604483015282908290818381606481015b03925af180156121375761222657505090565b612231828092610b8e565b611b7e575090565b6020015180518101608082820312611537579060208061225b930191016111bd565b5f516020612cad5f395f51905f52548151919291612281916001600160a01b0316610f86565b9161228a61133d565b815190936001600160a01b031691906122a590831515612a43565b6122ad612c06565b9160018060a01b0360208301511660606040840151930151600281101561150f576122d790612b74565b93823b15611f7857604051632d37a2ef60e11b81526001600160a01b039182166004820152918116602483015260448201939093529290911660648301528290829081838160848101612213565b60200151805181016080828203126115375790602080612347930191016111bd565b5f516020612cad5f395f51905f5254815161236a916001600160a01b0316610f86565b9161237361133d565b825190936001600160a01b0316919061238e90831515612a43565b60608301805160028110156125105760011461246e575b6123ad612c06565b6020850194604060018060a01b03875116910151918351600281101561150f576123d690612b74565b863b15611f785760405163582daa9760e11b81526001600160a01b03928316600482015292821660248401526044830193909352919091166064820152828160848183885af18015611a8f57908391612459575b5050519060028210156120c0575060011461244457505090565b905161135b91906001600160a01b031661282c565b8161246391610b8e565b611b8957815f61242a565b602084810180516040516370a0823160e01b81523060048201529290839060249082906001600160a01b03165afa9081156118c957859085926124d8575b6124d393506040880192835190818082109118021880935260018060a01b039051166128e5565b6123a5565b9150506020823d602011612508575b816124f460209383610b8e565b810103126100c057846124d39251916124ac565b3d91506124e7565b634e487b7160e01b83526021600452602483fd5b5f516020612cad5f395f51905f5254602090612548906001600160a01b03166129e0565b91015191606083805181010312611b7e576040519161256683610b44565b60208401518352604084015193600285101561153757602084019485526060015190600282101561153757604084019182526125a061133d565b9480516002811015611523575f19016126d1575b5083516040516370a0823160e01b81523060048201526001600160a01b039092169190602082602481865afa9182156126c6578592612692575b508180821091180218808552813b156118bd578391602483926040519485938492632e1a7d4d60e01b845260048401525af18015611a8f5790839161267d575b505080516002811015612510575f1901612649575b50505090565b519060028210156120c0575061267591906001600160a01b039061266c90612b74565b16905190612b02565b5f8080612643565b8161268791610b8e565b611b8957815f61262e565b9091506020813d6020116126be575b816126ae60209383610b8e565b810103126100c05751905f6125ee565b3d91506126a1565b6040513d87823e3d90fd5b516002811015611a41576126e76126fb91612b74565b85519030906001600160a01b038516612bc2565b5f6125b4565b90602061272360018060a01b035f516020612cad5f395f51905f5254166129e0565b920151906040828051810103126100c0576040519061274182610b73565b604060208401519384845201519260028410156100c05760208301938452803403612816575061276f61133d565b825190946001600160a01b03169390843b156100c0575f60049160405192838092630d0e30db60e41b8252895af1801561051457612801575b5080516002811015612510576127bd90612b74565b306001600160a01b03909116036127d6575b5050505090565b519060028210156120c05750906127f06127f89392612b74565b9051916129a4565b5f8080806127cf565b61280e9192505f90610b8e565b5f905f6127a8565b6307c83fcf60e41b5f526004523460245260445ffd5b6040519060205f8184019463095ea7b360e01b865260018060a01b03169485602486015281604486015260448552612865606486610b8e565b84519082855af15f513d826128c0575b50501561288157505050565b6128b96128be936040519063095ea7b360e01b602083015260248201525f6044820152604481526128b3606482610b8e565b82612a7b565b612a7b565b565b9091506128dd57506001600160a01b0381163b15155b5f80612875565b6001146128d6565b60405163095ea7b360e01b60208083019182526001600160a01b0385166024840152604480840196909652948252929390925f90612924606486610b8e565b84519082855af15f513d8261297f575b50501561294057505050565b60405163095ea7b360e01b60208201526001600160a01b0390931660248401525f60448085019190915283526128be926128b9906128b3606482610b8e565b90915061299c57506001600160a01b0381163b15155b5f80612934565b600114612995565b60405163a9059cbb60e01b60208201526001600160a01b039290921660248301526044808301939093529181526128be916128b9606483610b8e565b6040516321f8a72160e01b81527f0f8a193ff464434486c0daf7db2a895884365d2bc84ba47a68fcf89c1b14b5b8600482015290602090829060249082906001600160a01b03165afa908115610514575f916110f657506001600160a01b031690565b15612a4b5750565b6369616b8760e01b5f5260045260245ffd5b15612a66575050565b6371c4efed60e01b5f5260045260245260445ffd5b905f602091828151910182855af115610514575f513d612aca57506001600160a01b0381163b155b612aaa5750565b635274afe760e01b5f9081526001600160a01b0391909116600452602490fd5b60011415612aa3565b3d15612afd573d90612ae482610baf565b91612af26040519384610b8e565b82523d5f602084013e565b606090565b814710612b32575f918291829182916001600160a01b03165af1612b24612ad3565b9015612b2d5750565b612c49565b504763cf47918160e01b5f5260045260245260445ffd5b60ff5f516020612ced5f395f51905f525460401c1615612b6557565b631afcd79f60e31b5f5260045ffd5b906002821015612bae578115612ba45760018214612b9f575063ee7bbe9d60e01b5f5260045260245ffd5b309150565b905061135b610f44565b634e487b7160e01b5f52602160045260245ffd5b6040516323b872dd60e01b60208201526001600160a01b0392831660248201529290911660448301526064808301939093529181526128be916128b9608483610b8e565b7f77d7587726ce27a2d1a6421e65daa8ab8481b71227099b995512d28afa6b89005c906001600160a01b03821615612c3a57565b634c0c913f60e01b5f5260045ffd5b805115612c5857805190602001fd5b63d6bda27560e01b5f5260045ffd5b90612c725750612c49565b81511580612ca3575b612c83575090565b639996b31560e01b5f9081526001600160a01b0391909116600452602490fd5b50803b15612c7b56fe24da5178c808c813cf7ebebe5cb60eb708540ed968d5353d43b24720d9a86500360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbcf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00e26c696bf0e34aaf444e67b257b0ce1f00d161ab27c76bcd8c8582bed8ddd000a2646970667358221220d69c0c59caa8d5ae83a972c81076ff7a2cfc1f39fbc046f8899d0dd05469fd8664736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in HYPE
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.